36 years later – Chernobyl and the War

By Achim Klüppelberg

One year has passed and the Chernobyl Nuclear Power Plant is still asking questions that demand answers. The wild response to HBO’s miniseries “Chernobyl” and the continuing publication of high-class scientific literature has established again that both scholarly and public interest in the catastrophe has not subsided, even 36 years after the catastrophe happened. Higginbotham’s Midnight in Chernobyl and Brown’s Manual for Survival are only two examples, and I highly recommend reading both.

Liquidator’s memorial at Chernobyl NPP and second Sarcophagus in the background (photo courtesy of Pixabay).

There are many reasons for the continued interest in Chernobyl. First, there are still issues that demand an explanation regarding the accident and its consequences. What about the inherent safety features of a humanly made and controlled technological system? Perrow in his Normal Accidents taught us that accidents are inevitable in complex high-tech-systems in which humans play a crucial role. What does this mean for nuclear energy in the context of failing to meet the 1.5°C goal specified in the 2015/16 Paris Climate Agreement?

Second, those consequences still play a profound role in the present for many people, especially in Ukraine, Belarus and Russia. Can and will Russia finally shut down or replace all Chernobyl-type reactors that are still online at Leningrad-1 (2 active RBMKs), Smolensk-1 (3), and Kursk-1 (3)? True, they were updated after 1986 to compensate for intrinsic safety deficits, but can the state utility ROSATOM really guarantee that their operation poses no threat?

Third, the potential future of nuclear energy is linked to what Chernobyl means and represents, especially in regard to the watershed question whether long-term exposure to lowly to medium elevated radiation levels would be harmful to human societies over a long period of time. If one answers with yes, then many steps of the regular nuclear lifespan, such as mining, transportation, reprocessing and waste storage would have to be evaluated as dangerous liabilities. Recently, nuclear infrastructure has been interpreted as resembling colonial trade structures, as Jacob Darwin Hamblin writes in The Wretched Atom. While I am not convinced of his comparison with Frantz Fanon’s postcolonial classic The Wretched of the Earth, Hamblin has a point when it comes to the exploitation of uranium mines in previously or still colonised countries. The French Arlit mining complex in Niger serves as a sound illustration of this circumstance.

So where are we standing now, 36 years after the nuclear nimbus of technological progress, while not being destroyed, was at least severely dented? Recently, Chernobyl was in the news yet again because parts of the Russian invasion force into Ukraine captured the plant and caused disruptions, which in turn fuelled fears of the possibility of a renewed accident.

When the Russians retreated from Chernobyl after the failed first attack on Kiev, it became news that Russian soldiers had in fact built trenches in the heavily contaminated Red Forest, close to the station. Media outlets such as CNN, BBC and Reuters were wondering about the cases of radiation sickness within the Russian force and the renewed spread of radioisotopes through the interplay of wind and contaminated dust. This additionally testifies to the fact that Chernobyl has become what Kalmbach and Uekötter called an Erinnerungsort; a place which both became site and projection space for a catastrophe, for heritage, and for imaginaries of the future. It became a metaphor for nuclear fallout, technocratic hubris, and also the hope to overcome its consequences. But also for its vulnerability to war and terrorism.

A stretch of contaminated woods in the Chernobyl exclusion zone (photo courtesy of Pixabay).

Chernobyl’s 36th anniversary demands once again to reflect upon the danger of nuclear energy. Unfortunately, this question has apparently become urgent again, since all Ukrainian nuclear power plants evidently face the danger of warfare, inflicted by Russian arms. Today Ukraine is host to four active nuclear power plants: Khmelnytskyi, Rivne, South-Ukraine, and Zaporizhzhya. The latter also became recently famous beyond the circles of nuclear experts. Unfortunately, it was not because of its sheer size. (Zaporizhzhya is with its 6 GWe nominal capacity the largest nuclear power plant in Europe.) Instead, it was in the news because Russian troops shot at the plant’s facilities with cannon-sized shells, hitting one administrative building in a brutal attempt to take over the plant against local resistance.

This incidence has made it clear that in a time of war, civil nuclear power plants are highly dangerous objects. Here I am not only talking about potential damage received through military actions, but also harm done to the prevention of established security working routines. If workers are not able to regularly rotate their shifts and to get necessary rest, mistakes in operation will inevitably happen.

The same is true for the disruption of power lines. Electricity is necessary to keep the cooling system going of both an active nuclear power plant, and spent nuclear fuel as well as nuclear waste storage facilities. Every facility has backup generators, usually running on diesel. But if the stocks are depleted, for example if the outage takes substantially longer than three days, the situation can become dangerous. The problem is that the established nuclear infrastructure needs stability and adamant security routines to operate in a relatively safe way. A war in this environment is madness, as the warring parties, in the worst case, risk another nuclear meltdown with subsequent releases of large amounts of radioisotopes into the environment. Such an event, as shown by the Chernobyl catastrophe, can include Ukraine, Russia and other nations.

Personally, I have a lot of respect for all those workers at nuclear installations in Ukraine who stay at their workplace and try to keep it safe – in the cases of Chernobyl and Zaporizhzhya under direct risk for their personal health and also private fate. The future of Ukrainian nuclear power plants is of course linked to the outcome of the war. But it is clear that the previously established interconnectedness of nuclear infrastructure between European countries, including Russia, will be renegotiated. An independent Ukraine will probably have good reasons to never again cooperate with Russian nuclear specialists after what is happening now. This would have severe consequences for the Ukrainian nuclear industry in the spheres of uranium and fuel element provision, as well as the storing of spent nuclear fuel. In such a situation, Ukraine would probably have to find national solutions in addition to other non-Russian trading partners to compensate for that.

This situation in Ukraine during the war is a case of precedence, as there had earlier never been any conventional warfare in nuclearised landscapes. 36 years after the catastrophe of Chernobyl hit, we are now to rethink nuclear energy under these new circumstances. Chernobyl keeps asking us questions, which demand answers to secure the safety of established nuclear infrastructures in Europe in general and in Ukraine in particular. The events that are happening right now will profoundly change the European energy system. Besides the fossil fuel industry, also nuclear will have to re-organise. It is clear that we cannot continue like we did before February 2022.

Nuclear waters at the centre of a Soviet technocratic culture analysis

By Achim Klüppelberg

“In designing the water-graphite reactors used at Chernobyl, Soviet nuclear engineers chose specific design features that made serious – albeit not catastrophic – accidents all but inevitable.”1

Soviet nuclear power plants in the vast majority of cases depended on water as a necessary and safeguarding coolant. But where should one get enough of it in the largely land-locked territory of the Soviet Union? Soviet technocratic planners happily took on this challenge. Over the centuries, the country’s grand rivers, notably the Volga, the Don and the Dnepr, had hosted urban centres and industries, providing them with much-needed water resources. So why not use the immense flow of these waterways for harnessing a new and even greater industry – that of the peaceful atom? The Soviet civilian nuclear programme was one of the most ambitious of the world. Before 1986, the year in which Chernobyl struck, the nuclear industry held grand prospects for further investment and development. Being a country as vast as the USSR, in which 75% of the population lived in the west while 80% of (mostly fossil) energy resources were located in the east, technocratic planners envisioned nuclear power as one way to secure a stable energy supply, especially for industrial hotspots in western Russia and eastern Ukraine.2

Soviet projections in the 1980s stated that nuclear energy, together with coal, would be the only realistic choice for the future production of electricity, leaving hydro power deliberately out of the picture.3 Facing these circumstances, the nuclear inner circle decided, or so it seems, to turn a blind eye to possible detrimental consequences to both the natural environment and human populations, in order to reinvigorate an ailing Soviet economy and facilitate the advent of Communism.

In 1979 only 4.5% of the energy mix of the USSR actually derived from nuclear electricity production.4 Despite well-developed hydropower resources the country was excessively dependent on fossil fuels and stayed so until the red empire’s dissolution in 1991.5 However, Soviet technocrats mobilized tremendous resources into the development of the nuclear industry, hoping to diversify the Soviet energy mix. At the union level central planners agreed to increase nuclear power production from 16 GWe in 1982 to 90 GWe in 1990 and then even further to 200 GWe in 2000, hence aiming to increase nuclear power output 12.5-fold in just 18 years.6 In fact, by 1990 the Soviet Union had succeeded in installing 38.3 GWe.7 Although falling considerably short of the planned goal, these numbers show how technocratic planners in the Soviet Union at least partly managed to implement their vision of a nuclear future for their country.

But how did they use the country’s water resources to their advantage? Rivers, lakes and seashores could be prepared to host nuclear power stations, but each of them had important implications for local stakeholders, such as fisheries, agriculture and local municipalities. It is clear that water was, on the one hand, a limiting factor for the construction of nuclear power plants due to the necessity of sufficient coolant, and, on the other, an interconnecting trans-systemic substance, which incorporated the nuclear industry into the Soviet socio-economic utopia. My part of the NUCLEARWATERS project strives to investigate this linkage between technocratic culture and water, between central planning ambitions and atomic waterways and between communist historical-materialist ideals and nature’s essence of life. Only by investigating this complex of ideology, culture and material environment will scholars come closer to understanding the Soviet nuclear industry. If we want to judge nuclear safety in Europe’s East, this is necessary.

“Science demands sacrifices.”8

Petrosyants, chairman of the State Committee for the Use of Nuclear Energy in the USSR on 6 May 1986, 10 days after the explosions of reactor 4 at Chernobyl.

1Geist: Political Fallout: The Failure of Emergency Management at Chernobyl’, p. 107.

2Semenov: Nuclear power in the Soviet Union, in: International Atomic Energy Agency Bulletin Vol. 25, No. 2, June 1983, p. 47.

3Medvedev, Z.: The Legacy of Chernobyl, New York a. London 1990, pp. 300-301.

4Margulis: Atomnaya ėnergiya i radiatsionnaya bezopasnost’, Moskva 1983, p. 125.

5CIA: USSR Energy Atlas, Washington a. Springfield 1985, p. 7.

6Vorob’ev et al.: Radiation Safety of Atomic Power Plants in the USSR, in: Atomic Energy (Vol. 54, No.4, April 1983), Luxembourg/ Berlin/ Heidelberg 1983, pp. 290-301, here p. 290.

7https://pris.iaea.org/PRIS/CountryStatistics/CountryDetails.aspx?current=RU [25.04.2019]). Also IAEA: Nuclear Power Reactors in the World (Reference Data Series No.2, 2018 Edition), Vienna 2018.

8Medwedew, G.: Verbrannte Seelen. Die Katastrophe von Tschernobyl, Munich a. Vienna 1991, p. 222.