NUCLEARWATERS welcomes Louis Fagon as a Guest

The NUCLEARWATERS project puts great emphasis on studying nuclear history globally. Therefore, it is of major importance to us to work with other researchers. This March we welcome French nuclear historian Louis Fagon, who will stay with us for one month. NUCLEARWATERS project member Alicia Gutting is curious about who he is.

Alicia Gutting: Louis, it is great to have you here! Could you please introduce yourself and tell us about your research?

Louis Fagon: I am a PhD candidate in history at the École des Hautes Études en Sciences Sociales in Paris since 2018. In my thesis The Nuclear Industry at the Rhône River (1950s-1997) I am researching the social and environmental effects of the excessive nuclear planning at the Rhône with a focus on the microscale. Using local archives, I try to narrow in on the regional nuclear history. So far, the national history of nuclear power of France has been studied, however, the regional histories still remain a desideratum. What connects my research to the NUCLEARWATERS project is the special interest in water. In my thesis I research water twofoldly: On the one hand as part of the environment and a cooling agent for nuclear power plants and on the other hand water offers a research access to the nuclear history of France. Researching nuclear power in France most often poses a challenge as almost all files concerning nuclear are classified. The water focus is one way to circumvent the issue of access. So, I have been taking a detour through water files in the archives, which have led me to nuclear files in the end.

AG: How did you hear about the NUCLEARWATERS project?

LF: This was purely coincidental. I attended a conference in Mulhouse on the future of post-nuclear territories. There I’ve heard about a group of international researchers studying nuclear power from a water perspective in Stockholm. I was thrilled to hear that there were also other people interested in these issues! This seemed to confirm the relevance of my choice of subject, but I was also eager to meet the group.

AG: What expectations do you have of your time here?

LF: The Rhône is a transnational water body and also an international resource. This means different interests can collide over the allocation of this resource. I am hoping to learn from the other researchers in the group as they all have different national as well as international perspectives on nuclear power. These other perspectives will hopefully contribute to my thesis work, assist me in asking interesting questions and also challenge the French notion of France being exceptional.

AG: Thank you for telling us a little about yourself and your research!

On 25 March from 1pm till 3pm Louis will give a seminar at KTH’s Division of History of Science, Technology and Environment and elaborate a little more on his research. This will also be the launch of our NUCLEARWATERS Seminar Series. Welcome to join us if you are in town!

Mining, Waste, and the so-called nuclear fuel-cycle

Last Tuesday Nuclearwaters-colleague Andrei Stsiapanau and me have interviewed Dima Litvinov on his experiences in the capacity of Greenpeace representative in Russia. Among other issues, Russian nuclear waste handling during the chaos of the 1990s became our main topic.

While it was in itself an exciting event, two points kept me thinking. First the characteristics of the so-called nuclear fuel cycle and secondly the role of water in it. As Per Högselius has argued, in reality there is no such thing as a fuel cycle – proclamations of the nuclear industry notwithstanding. Instead, we actually have a linear concept. With the mining of uranium it has a clear beginning and with the storage of nuclear waste it has its ending. The actual amount of recycled fuel elements can prolong its lifetime, but they will ultimately end as waste. Dima shared with us his experiences of both the mining and the storage aspect. It became apparent that water stayed a very crucial component in both. Unfortunately, water is often the carrier of radionuclide-emissions in both instances. Whether it is used as cleaning agent in the mining process, or as medium for storage in the case of waste-dumping into the sea.

This proves that water stays crucial in the system of a nuclear power plant – also apart from cooling purposes. If we want to improve nuclear safety, water as this crucial aspect needs to be accounted for in our studies.

Roman Khandozhko joins NUCLEARWATERS

The NUCLEARWATERS research group is expanding! Today we are welcoming Dr. Roman Khandozhko as a new project member, to work with us for a period of one year as a senior researcher. Roman’s employment at the Division of History of Science, Technology and Environment at KTH Royal Institute of Technology takes the form of a unique cooperation between two ongoing ERC projects: NUCLEARWATERS and GRETPOL (the latter led by Peder Roberts).

Roman holds a PhD degree in history from Rostov-on-Don in Russia. He has extensive earlier experience of researching the history of nuclear energy in the Soviet Union, most recently through his participation in the impressive “Nuclear Technopolitics of the Soviet Union” project at the University of Tübingen in Germany. In his new position at KTH Roman he will contribute to our regional case study on the Soviet Union’s nuclear waters.

Exploring the nuclearized Po River basin

From 24 to 27 October NUCLEARWATERS project leader Per Högselius participated in the annual meeting of the Society for the History of Technology (SHOT), wich was held in Milan this year. The history of nuclear engineering played a prominent role at the meeting, featuring an impressive 25 presentations analyzing nuclear technologies in energy, medicine and war. Our project featured in a special session organized by ERC representative Flavia Cumoli, with the double purpose of spreading the word about three ongoing ERC projects in the history of technology – the other two being led by Maria Rentetzi and Mikael Hård – and seeking to inspire other historians of technology to apply for the ERC’s generous research grants.

After the meeting we decided to take the opportunity to explore Italy’s nuclear past through an excursion to the Po River basin. The area around and between Milan and Turin is heavily industrialized, while also being a key agricultural region. Water flows play key roles for both industry and agriculture, and the region has a proud water history, with a mesmerizing network of tributaries to the Po, artificial water ways, irrigation systems and so on. Rice cultivation, being highly dependent on water, has a long tradition in the region.

Several key nuclear facilities were built in the Po River basin. We went to see, in particular, the once so proud Trino Vercellese nuclear power plant, one of the world’s first-ever pressurized water reactors (PWRs), which went operational in 1964. At that time Italy was on the forefront in nuclear energy developments. Not far from here, in Saluggia, where the famous Cavour Canal meets a major Po tributary, the Italian nuclear engineers constructed the EUREX facility for reprocessing spent nuclear fuel. As noted by Davide Orsini in a presentation at the SHOT annual meeting, that site soon became problematic due to repeated problems with severe flooding of the whole facility.

In another SHOT presentation, Elisabetta Bini analyzed the new surge in nuclear construction in Italy that followed after the two oil shocks in the 1970s. One of the main new projects in the 1980s was to build two new powerful nuclear reactors just next to the existing Trino site on the Po. However, internal technical problems and fierce opposition from the side of the general public, and in particular from the local rice farmers, who feared local climate changes and water shortages, caused the new projects to stagnate. Then, in 1986, the Chernobyl accident occurred, and in a referendum the year after Italy opted radically to phase out its entire nuclear programme. And so by 1990 not only had construction of the new reactors at Trino been stopped, but also the original Trino facility built in the 1960s was being permanently closed down. However, the Enrico Fermi Nuclear Power Plant, as it is also called, is still there to be seen, beautifully situated on the swiftly flowing Po, in the dreamy fog of history.

Nuclear Waters at the Centre of a Soviet Technocratic Culture Analysis

“In designing the water-graphite reactors used at Chernobyl’, Soviet nuclear engineers chose specific design features that made serious – albeit not catastrophic – accidents all but inevitable.”1

Soviet nuclear power plants in the vast majority of cases depended on water as a necessary and safeguarding coolant. But where should one get enough of it in such an inaccessible and land-locked landscape, encompassing steppes, forests, mountains, deserts, and arable land featuring one of the harshest continental climatic differences between summer and winter in the whole world?

For Soviet technocratic planners, this did not pose an unconquerable obstacle. Over the centuries, the country’s grand rivers, for example the Volga, Don and Dnepr have hosted numerous settlements with different industries and economical endeavours as well as some of the respective area’s biggest population centres. So why not using their immense powers for harnessing a new and even greater power – that of the mirnij atom?

Unsurprisingly, the Soviet civil nuclear programme was one of the most ambitious of the world. Before 1986, the year in which Chernobyl struck, the nuclear industry held grand prospects for further investment and development. Being a country as vast as the USSR, in which 75% of the population lived in the West while 80% of national (mostly fossil) energy resources were located in the Far East, technocratic planners envisioned nuclear power as one way to secure a stable energy supply, especially for industrial hotspots in western Russia and eastern Ukraine.2

Soviet projections in the 1980’s stated nuclear energy would be together with coal the only realistic choice for the future production of energy, leaving hydro power deliberately out of the picture.3 Facing these circumstances, the nuclear inner circle decided to turn a blind eye to possible detrimental consequences to both the natural environment and human populations, in order to reinvigorate an ailing Soviet economy to facilitate the advent of Communism.

In 1979 only 4,5% of the energy mix of the USSR actually derived from atomic electricity production.4 Instead, the country was despite developed hydro power stations fully dependent on fossil fuel and stayed so until her end.5 Economically speaking, Soviet technocrats had mobilised tremendous resources into the development of the nuclear industry in order to further diversify the Soviet energy mix. On the union-level central planners agreed to increase nuclear power production from 16 GWe in 1982 to 90 GWe in 1990 and then even further to 200 GWe in 2000, hence aiming to increase nuclear power output 12,5 times in just 18 years6. In fact, in 1990 prior to her collapse, the Soviet Union had succeeded in installing 38.3 GWe.7 Although falling considerably short of the planned goal, these numbers show how technocratic planners in the Soviet Union succeeded to implement their vision of nuclear future for their country.

But how did they use the water network to their advantage? Rivers, lakes and the sea-shore could be prepared to host nuclear power stations, but each of them had important implications for local stakeholders, such as fisheries, agriculture and local municipalities. It is both clear, that water was on the one hand the limiting factor for the construction of nuclear power plants due to the necessity of sufficient coolant, and on the other an everything connecting trans-systemic agent, which incorporated the nuclear into the Soviet socio-economic utopia. My part of the Nuclearwaters-Project strives to investigate this linkage between Technocratic Culture and water, between central planning ambitions and atomic waterways and between communist historic-materialist ideals and nature’s essence of life. Only by investigating this complex of ideology, culture and material environment scholars will come closer to understanding the Soviet nuclear industry. If we want to judge nuclear safety in Europe’s East, this is necessary.

“Science demands sacrifices.”8

Petrosyants, chairman of the State Committee for the Use of Nuclear Energy in the USSR on 6 May 1986, 10 days after the explosions of reactor 4 at Chernobyl.

1Geist: Political Fallout: The Failure of Emergency Management at Chernobyl’, p. 107.

2Semenov: Nuclear power in the Soviet Union, in: International Atomic Energy Agency Bulletin Vol. 25, No. 2, June 1983, p. 47.

3Medvedev, Z.: The Legacy of Chernobyl, New York a. London 1990, pp. 300-301.

4Margulis: Atomnaya ėnergiya i radiatsionnaya bezopasnost’, Moskva 1983, p. 125.

5CIA: USSR Energy Atlas, Washington a. Springfield 1985, p. 7.

6Vorob’ev et al.: Radiation Safety of Atomic Power Plants in the USSR, in: Atomic Energy (Vol. 54, No.4, April 1983), Luxembourg/ Berlin/ Heidelberg 1983, pp. 290-301, here p. 290.

7https://pris.iaea.org/PRIS/CountryStatistics/CountryDetails.aspx?current=RU [25.04.2019]). Also IAEA: Nuclear Power Reactors in the World (Reference Data Series No.2, 2018 Edition), Vienna 2018.

8Medwedew, G.: Verbrannte Seelen. Die Katastrophe von Tschernobyl, Munich a. Vienna 1991, p. 222.

Workshop in Dounreay, Scotland

Dounreay nuclear station was in operation between 1955 and 1994 and houses two fast breeder reactors and one thermal research reactor, along with fabrication and reprocessing facilities. Next to it is a military nuclear establishment with two reactors for submarine developments, in operation between 1965 and 2015. Taken together, there are no less than five reactors located directly on the dramatic shore of Scotland’s northern tip, where the North Sea meats the Atlantic Ocean and create some of the most dangerous water fairways in the world.

During the second week of September, about fifteen scholars and heritage professionals, among them NUCLEARWATERS’ Anna Storm, met in Dounreay and the nearby town of Thurso to engage with the legacies of the nuclear establishment, among them a flourishing community life but also severe contamination problems. The liquid radioactive waste produced by the nuclear research experiments was often simply discharged into the sea through an underwater pipe, while the solid residues were dumped into a deep shaft on site, originally stemming from the building of the emission pipe. After an explosion in the 1970s, it was acknowledged that the shaft was not an acceptable storage, not least since it was unlined and open to ground water flows.

All transportation to and from the Dounreay site go through the nearby Scrabster harbour. Scrabster has a long fishing tradition and remains one of the top landing ports in the UK for whitefish and shellfish, including brown crab, lobsters, prawns and scallops. During our visit, trucks went in shuttle service to customers southward, not only in the UK but on the European continent. Around the Dounreay nuclear site however, there is an effective fishing prohibition for a radius of two kilometers, and the levels of contamination at the closest beach of Reay are still unclear.

Alicia Gutting presents her PhD project

Today NUCLEARWATERS doctoral candidate Alicia Gutting presented her PhD project plan in the Higher Seminar series at KTH’s Division of History of Science, Technology and Environment.

Alicia Gutting holds a diploma degree in theatre, film and media studies and a master’s degree in social and cultural anthropology, both from the University of Vienna. Before joining KTH she also worked as a junior researcher at the Institute of Technology Assessment at the Austrian Academy of Sciences. In her PhD project she explores the making of the Rhine as a highly nuclearized transnational river basin from the 1960s to today. Key to grasping this history, she argued at the seminar, is to study the transnational perception of risk in the borderlands between Germany, France, Switzerland and Austria. She sets out to do so from a healthy diversity of empirical angles, ranging from fears of floods and droughts and the consequences of heatwaves – the latter phenomenon was dramatically illustrated during the past two summers as Rhine nuclear operators were forced to lower electricity production in the face of water scarcity – to clashes between nuclear cooling requirements – of exisential importance for preventing nuclear core meltdowns! – and equally existential drinking water needs and, not least, powerful agricultural interests and fears of local climate change.