36 years later – Chernobyl and the War

By Achim Klüppelberg

One year has passed and the Chernobyl Nuclear Power Plant is still asking questions that demand answers. The wild response to HBO’s miniseries “Chernobyl” and the continuing publication of high-class scientific literature has established again that both scholarly and public interest in the catastrophe has not subsided, even 36 years after the catastrophe happened. Higginbotham’s Midnight in Chernobyl and Brown’s Manual for Survival are only two examples, and I highly recommend reading both.

Liquidator’s memorial at Chernobyl NPP and second Sarcophagus in the background (photo courtesy of Pixabay).

There are many reasons for the continued interest in Chernobyl. First, there are still issues that demand an explanation regarding the accident and its consequences. What about the inherent safety features of a humanly made and controlled technological system? Perrow in his Normal Accidents taught us that accidents are inevitable in complex high-tech-systems in which humans play a crucial role. What does this mean for nuclear energy in the context of failing to meet the 1.5°C goal specified in the 2015/16 Paris Climate Agreement?

Second, those consequences still play a profound role in the present for many people, especially in Ukraine, Belarus and Russia. Can and will Russia finally shut down or replace all Chernobyl-type reactors that are still online at Leningrad-1 (2 active RBMKs), Smolensk-1 (3), and Kursk-1 (3)? True, they were updated after 1986 to compensate for intrinsic safety deficits, but can the state utility ROSATOM really guarantee that their operation poses no threat?

Third, the potential future of nuclear energy is linked to what Chernobyl means and represents, especially in regard to the watershed question whether long-term exposure to lowly to medium elevated radiation levels would be harmful to human societies over a long period of time. If one answers with yes, then many steps of the regular nuclear lifespan, such as mining, transportation, reprocessing and waste storage would have to be evaluated as dangerous liabilities. Recently, nuclear infrastructure has been interpreted as resembling colonial trade structures, as Jacob Darwin Hamblin writes in The Wretched Atom. While I am not convinced of his comparison with Frantz Fanon’s postcolonial classic The Wretched of the Earth, Hamblin has a point when it comes to the exploitation of uranium mines in previously or still colonised countries. The French Arlit mining complex in Niger serves as a sound illustration of this circumstance.

So where are we standing now, 36 years after the nuclear nimbus of technological progress, while not being destroyed, was at least severely dented? Recently, Chernobyl was in the news yet again because parts of the Russian invasion force into Ukraine captured the plant and caused disruptions, which in turn fuelled fears of the possibility of a renewed accident.

When the Russians retreated from Chernobyl after the failed first attack on Kiev, it became news that Russian soldiers had in fact built trenches in the heavily contaminated Red Forest, close to the station. Media outlets such as CNN, BBC and Reuters were wondering about the cases of radiation sickness within the Russian force and the renewed spread of radioisotopes through the interplay of wind and contaminated dust. This additionally testifies to the fact that Chernobyl has become what Kalmbach and Uekötter called an Erinnerungsort; a place which both became site and projection space for a catastrophe, for heritage, and for imaginaries of the future. It became a metaphor for nuclear fallout, technocratic hubris, and also the hope to overcome its consequences. But also for its vulnerability to war and terrorism.

A stretch of contaminated woods in the Chernobyl exclusion zone (photo courtesy of Pixabay).

Chernobyl’s 36th anniversary demands once again to reflect upon the danger of nuclear energy. Unfortunately, this question has apparently become urgent again, since all Ukrainian nuclear power plants evidently face the danger of warfare, inflicted by Russian arms. Today Ukraine is host to four active nuclear power plants: Khmelnytskyi, Rivne, South-Ukraine, and Zaporizhzhya. The latter also became recently famous beyond the circles of nuclear experts. Unfortunately, it was not because of its sheer size. (Zaporizhzhya is with its 6 GWe nominal capacity the largest nuclear power plant in Europe.) Instead, it was in the news because Russian troops shot at the plant’s facilities with cannon-sized shells, hitting one administrative building in a brutal attempt to take over the plant against local resistance.

This incidence has made it clear that in a time of war, civil nuclear power plants are highly dangerous objects. Here I am not only talking about potential damage received through military actions, but also harm done to the prevention of established security working routines. If workers are not able to regularly rotate their shifts and to get necessary rest, mistakes in operation will inevitably happen.

The same is true for the disruption of power lines. Electricity is necessary to keep the cooling system going of both an active nuclear power plant, and spent nuclear fuel as well as nuclear waste storage facilities. Every facility has backup generators, usually running on diesel. But if the stocks are depleted, for example if the outage takes substantially longer than three days, the situation can become dangerous. The problem is that the established nuclear infrastructure needs stability and adamant security routines to operate in a relatively safe way. A war in this environment is madness, as the warring parties, in the worst case, risk another nuclear meltdown with subsequent releases of large amounts of radioisotopes into the environment. Such an event, as shown by the Chernobyl catastrophe, can include Ukraine, Russia and other nations.

Personally, I have a lot of respect for all those workers at nuclear installations in Ukraine who stay at their workplace and try to keep it safe – in the cases of Chernobyl and Zaporizhzhya under direct risk for their personal health and also private fate. The future of Ukrainian nuclear power plants is of course linked to the outcome of the war. But it is clear that the previously established interconnectedness of nuclear infrastructure between European countries, including Russia, will be renegotiated. An independent Ukraine will probably have good reasons to never again cooperate with Russian nuclear specialists after what is happening now. This would have severe consequences for the Ukrainian nuclear industry in the spheres of uranium and fuel element provision, as well as the storing of spent nuclear fuel. In such a situation, Ukraine would probably have to find national solutions in addition to other non-Russian trading partners to compensate for that.

This situation in Ukraine during the war is a case of precedence, as there had earlier never been any conventional warfare in nuclearised landscapes. 36 years after the catastrophe of Chernobyl hit, we are now to rethink nuclear energy under these new circumstances. Chernobyl keeps asking us questions, which demand answers to secure the safety of established nuclear infrastructures in Europe in general and in Ukraine in particular. The events that are happening right now will profoundly change the European energy system. Besides the fossil fuel industry, also nuclear will have to re-organise. It is clear that we cannot continue like we did before February 2022.


Archival research of the future

By Alicia Gutting

Like so many other researchers, I experienced a slowdown in my research activities over the last two years. Archive visits could no longer be planned well in advance, but had to happen spontaneously and even then, it was not certain that I would actually be able to travel. Combined with other commitments, such as teaching, this presented me with greater difficulties than I would have liked. Summer 2021 offered one of the rare chances to actually travel to Germany and visit archives for my PhD research on the Nuclear Rhine. My plan was to go to the Generallandesarchiv in Karlsruhe and the Staatsarchiv in Freiburg. Afterwards, I wanted to head to Switzerland to visit the Federal Archives in Bern.

Shortly before my departure, however, the government of Baden-Württemberg introduced new corona restrictions that made it difficult for me to visit the two archives in Baden-Württemberg. So, I changed my plans at short notice and ordered digitised documents online and books from the library, which are not so easily accessible in Sweden.

My visits to archives so far, at least in Germany, have followed a fairly similar pattern. I ordered many thick folders, boxes and files, which I went through at top speed and handwrote on a form what I considered worth copying. This way of working was not always pleasant, but usually could not be avoided. There are many documents on the nuclear history of the Rhine and when ordering archival materials, it is not always clear whether there are relevant documents in them. Also, in many archives it is not allowed to photograph documents that are younger than 100 years.

I then submitted the form and so ordered digital copies, which were made available to me after about a month and after paying a substantial invoice. The fact that these archives now offered the service of ordering digital copies online made my work much easier, even if there were differences between the individual archives. One archive provided me with the digital copies within a very short time and the staff even took the trouble to search for documents on certain topics from the records. Another archive was unable to do this due to a lack of staff. Even though this reasoning seemed plausible to me, I asked myself how archival research would be organised in the future if one cannot always just hop on a plane or train like that, for whatever reason.

I basically got the answer to my question while I was doing my research in Switzerland. The Federal Archives in Bern are already digitising entire collections of files and doing so free of charge. Some of the archival documents relevant to me had already been digitised, while others I ordered as digital copies. However, since I was looking for materials for several articles and this required me to go through many files and folders, I set off for Switzerland. In contrast to Baden-Württemberg, the requirements in Bern were not quite as strict and I was looking forward to two intensive weeks in the archive.

Swiss Federal Archives

For me, this was my first visit to Bern and what particularly impressed me was the connection between the river Aare and the city. On the one hand, the Aare flows right through it, but not as a strongly tamed little river, but as a watery stream that also had something impetuous about it.

The Aare and Bern

On the other hand, the turquoise colour of the river was reflected in the city centre, which is uniformly built of the striking green sandstone of the Bernese hinterland. The uniformity of the city centre put me off at first. Especially because the houses were decorated with national flags and in combination with the somewhat gloomy sandstone, the city centre had something oppressive about it.

Old City of Bern and Unesco World Heritage site

The swift Aare, on the other hand, lightened the mood. What struck me most was the view of the city from the Rose Garden. It was only here that I realised how green and almost natural Bern actually is. From Stockholm’s perspective, of course, this is nothing new. However, since I also lived in Vienna for more than ten years and this city hides its greenery almost entirely in backyards, I was still somewhat impressed. Moreover, I was in Bern in June, which was not inferior to high summer in terms of temperature, and the cool breeze blowing through the city by the river and the greenery made the heat not quite so unbearable.

View from Bern’s Rose Garden

All in all, I have to say that my personal archival odyssey nevertheless ended on a positive note and I got something like an idea of how future archival work could be organised.

Upcoming: NUCLEARWATERS Seminar with Dima Litvinov

The Nuclear Waters of Russia’s Pryargunsky Uranium Mine – Film, Commentary and Discussion

Friday 18 February at 10.15-12.00 CET (Stockholm Time)

Taking place in hybrid-format at KTH’s Division of History of Science, Technology and Environment (big Seminar Room) and via Zoom:

Join us via zoom: https://kth-se.zoom.us/j/62616138902

Greenpeace campaginer and former Arctic 30-member Dima Litvinov presents the water aspects of Krasnokamensk’s Pryargunsky Uranium Mine in eastern Siberia. After the fall of the Soviet Union, Dima went to one of the biggest uranium mines in the world to investigate how water was being treated throughout the mining process. There, they were also able to film. This film is now going to be presented as part of the NUCLEARWATERS seminar series. Dima will comment on the video and we will have a joint discussion afterwards. This event should be interesting for scholars of mining endeavours, nuclear history, water and contamination experts. Join us at KTH or online via Zoom!

Dima Litvinov

Melina Antonia Buns joins NUCLEARWATERS as a post-doctoral researcher

Nuclear-historical research at KTH is expanding! We are happy to announce that Melina Antonia Buns has joined us as a visiting post-doc researcher, based on a collaboration between NUCLEARWATERS, KTH’s Division of History of Science, Technology and Environment and The Greenhouse at the University of Stavanger. Melina was recently awarded a major research grant from the Norwegian Research Council, which will enable her to spend two years at KTH. The grant is linked to her project “Nuclear Nordics: Radioactive Waste Spatialities, Materialities and Societies in the Nordic Region, 1960s-1980s”. Read more about this exciting research endeavor at the website of the Norwegian Research Council.

Melina Antonia Buns at her new KTH office

Melina holds a BA in history, art history and Scandinavian studies from the University of Vienna, an MA in International and Global History and a PhD in history from the University of Oslo. In June 2021 she successfully defended her thesis “Green Internationalists: Nordic Environmental Cooperation, 1967-1988”. At KTH she will make use of her expertise in Nordic environmental history while moving into the nuclear-historical field.

Melina will present her research project “Nuclear Nordics” in the NUCLEARWATERS seminar series on Wednesday 2 February at 13.15-15.00 CET. Welcome to join the seminar over zoom: https://kth-se.zoom.us/j/67288060397.

Research in Kiev

By Achim Klüppelberg

Every writer knows that there are different phases in our work. Of course, the most important phase is the writing phase. After all, it is our job to produce high-quality texts, is it not? Subsequently, every writer also knows that in order to be able to do so, one needs high-quality sources. While working as an historian, having access to valuable source material is paramount in order to write something relevant for the respective academic field. At the same time, the Covid-19 pandemic has made normal schedules obsolete, and many archival trips had to be cancelled or postponed – in my case, since summer 2020. Therefore, I was very grateful to finally be able to go on a crucial archival trip this November.[1] My destination was the vibrant Ukrainian capital of Kiev, and I had three archives stacked with Soviet-era nuclear documents on my to-do-list. Here, I would like to tell you about my experiences and impressions.

The Dnepr next to Kontraktova Square Metro Station

Naturally, Kiev is a city with a rich history, reflected in different architectural styles, urban planning and monuments. Kiev has a troubled and at the same time glorious history. Being the medieval cradle of Eastern Slavic principalities, states and nations, having formed the mighty Kievan Rus Empire, which through its Baptism led to the Slavic traditions of Eastern Orthodoxy, forming the cultural, political, and industrial capital of Ukrainians, posing as a major battlefield in World War Two, centring Ukraine’s independence after the collapse of the USSR and recently hosting the Maidan protests, this place emanates historic significance at its different sites. Kiev is also a torn city, in which the current economic crisis, the hybrid-war with Russia, antisemitism and nationalism struggle with opposing ideas on the streets. If we live in a time during which Ukrainian history is written in short intervals, then Kiev is the place to be.

My work led me to three archives. The first on the list was the Central State Archive of Supreme Bodies of Power and Government of Ukraine (Центральний державний архів вищих органів влади та управління України, ЦДАВО). Located in South Central Kiev, the archive is based in a complex of several governmental institutions. The reading room offered a rich ensemble of documents from Soviet-Ukrainian ministries and planning institutions, which proved to be invaluable for the immediate progress of my dissertation.

My second station was the Central State Archive of Public Organisations of Ukraine (Центральний державний архів громадських об’єднань України, ЦДАГО України), where I looked into files from the Communist Party. The archive was located next to the Kiev Region State Administration, along which the massive Lesi Ukrainky Boulevard allowed dozens of cars to speed on ten lanes towards the city centre. Here, I was less fortunate. The CP Ukraine files I ordered offered insights into internal party affairs, but not into any planning aspects of Soviet Ukraine’s energy system.

State Archive of Kiev Province building plate

My third and last station on this trip was the State Archive of Kiev Province (Державний архів Київської області, ДАКО). Inspired by Louis Fagon’s approach of visiting local and regional archives in order to circumvent the occasional quietness in central documents on nuclear issues, I examined local party protocols of the towns of Pripyat and Chernobyl to find out more about water amelioration processes and different important stages of the construction of the Chernobyl Nuclear Power Plant. Here, lots of exciting issues came to light and I am looking forward to incorporate them into my next article.

Apart from those visits to the archives, I was also able to see the exhibitions at the Holodomor and the Chernobyl museums. Both were very impressive. The Holodomor Museum was located in the Park of Eternal Glory overlooking the Dnepr, in which apart from the museum many memorials for Ukrainian nationalists were placed. There, visitors would see an exhibition showing the horrors of the forced famine in Stalin’s Soviet Union from 1932-33. This was based on many personal testimonials and artefacts from survivors of these times. Their main message was that it was a planned famine created by Moscow as a way to subdue ethnic Ukrainians.

I was very surprised, in a positive way, by the Chernobyl Museum. There, they had collected multiple artefacts of the main protagonists of the catastrophe, such as identity cards and passports from Deputy Chief Engineer Anatoly Dyatlov, or accident-shift-leader Aleksandr Akimov. Selected archival documents along newspaper articles were also on display. Next to them, one could see the flags of the firefighter brigades, uniforms, respirators, and dosimeters. Two whole sections were dedicated to the construction of the first and the second sarcophagus. Following were some dedications to the international solidarity in regard to the mitigation of the consequences of the accident as well as the ongoing help for chronically sick people, such as the “Children of Chernobyl” network. Another room was dedicated to the effects of radionuclides dispersed by the accident to the environment and human society. Here the focus was not to tell a uniquely Ukrainian story, but instead to document the disaster from an international point of view.

Summarising, I am very grateful for this opportunity that arose at this crucial state in my dissertation. Kiev is an exciting place, where so many things have happened and are happening right now. It is definitely worth a trip.

[1] 03 -20 November 2021.

Exploring nuclear Germany

By Per Högselius

As the most recent wave of the corona pandemic rolls in over Europe, it seems that much of the past summer and autumn was a narrow window of opportunity for international travel. I now feel happy that I managed to make use of that window.

In late September I went to Regensburg to participate in a conference on infrastructures in East and Southeast Europe (see my separate blogpost on that). After the conference, I stayed on in Bavaria for a couple of days. I rented a car and a bike and went to take a close look at the water supply arrangements for three German nuclear power plants and the nuclearized landscapes that have emerged as a result of nuclear construction there from the 1960s to the 1980s.

Gundremmingen is the only German nuclear power plant situated directly on the Danube. It started to be built already in 1962 and was one of Germany’s first nuclear power plants. There was a fierce debate during construction about possible contamination of the region’s drinking water. Less known is that plant construction demanded a complex reengineering of the Danube, which was dammed upstreams and also a few kilometres downstream to create a reliable and regular water flow for cooling the reactors. This generated an artificial water reservoir, the shores of which, as I was able to experience directly, are nowadays still very popular places for various leisure activities. Nuclear hydraulic engineers also built a canal to divert Danube water to the nuclear plant. The early pioneering reactor at Gundremmingen was shut down long ago. However, the plant was expanded through the addition of two much more powerful reactors: one boiling water reactor (seen to the left in one of the pictures below) and one pressurized water reactor (seen to the right), which today makes the plant area look very diverse. The pressurized water reactor was closed in 2017. The boiling water reactor, supported by one cooling tower, is still in operation, but like all remaining German NPPs, its days are numbered.

The Isar nuclear power plant is named after the Danube tributary on which it was built. Here, too, nuclear construction was intimately linked to other hydraulic projects aimed at “taming” the river. The Isar was dammed and equipped with hydroelectric turbines (see the image to the upper left), which now still contribute to the safety of the nuclear station, because they ensure that electricity will always be available locally even in the case of a regional power failure. This made it unnecessary for the nuclear operators to invest in emergency diesel generators. The Isar plant was originally designed for one boiling water reactor only, for which a less powerful and very compact type of cooling towers were built (lower left, to the right of the reactor building); these were used only when the Isar’s water flow was insufficient. The high-rise cooling tower that can be seen across much of Bavaria was constructed only when a further reactor, of the pressurized water type, was added later on (right). The boiling water reactor was shut down immediately after the 2011 Fukushima disaster. The pressurized water reactor is supposedly still in operation, but apparently not on the day of my visit, judging by the lack of “smoke” (water vapour) from the cooling tower.

The Grafenrheinfeld NPP is also in Bavaria, but further north, in Lower Franconia, where the inhabitants usually don’t think of themselves as “Bavarians”. This cultural divide largely coincides with the physical drainage divide between the Rhine and the Danube river basins. Hence this nuclear station, which is no longer in operation (having been shut down in 2015), is situated not in the Danube basin, but on the Main, the Rhine’s most important tributary. When construction started in 1974 the Main was already a suitable river for cooling water supplies. This was because Germany had invested enormously in the 1950s and 1960s in making the Main navigable all the way up to Bamberg, taming the river and regularizing its water flow with the help of no fewer than 34 weirs and locks. The river is now part of a system that interconnects the Rhine and Danube river basins, the centrepiece of which is the Rhein-Main-Danube Canal.

A month later I returned to Germany. I first spent a few days at the German Federal Archives in Koblenz, which turned out to be a treasure trove for nuclear-historical research. I then went up (or rather down) to northern Germany and the Lower Elbe region. There I went to see how the Stade, Brokdorf and Brunsbüttel nuclear power plants (of which only Brokdorf is still in operation, but only until the end of this year) were integrated into this North Sea estuary. In contrast to the plants erected along the Danube, Isar and Main further south, the main challenge here seemed to be flood (rather than water scarcity) management. The Lower Elbe region is historically very much a marshland and all nuclear – indeed, all industrial – projects are dependent on a reliable drainage infrastructure. Like in the Netherlands, that infrastructure is critically dependent on large pumps for lifting water, in this case into the Elbe (see the image below, far left). The nuclear stations along the Lower Elbe also made use of a pre-nuclear infrastructure of earthen dikes, which are typically 5 meters tall (upper and lower right). These have always formed the centerpiece of nuclear flood protection and hence they can be regarded as components in the nuclear safety system. However, after the 1999 flooding of the Blayais NPP in France, a plant that is located in an estuary very similar to that of the Elbe, German regulatory authorities started looking into the deeper history of flooding events in the North Sea and how new such events might potentially cause havoc to the Lower Elbe NPPs: would they be able to cope with an event on a par with the famous Storegga slide, which is believed to have caused a huge tsunami throughout the North Sea region back in 6200 BC?

In early 2022 I will publish an article in Technology & Culture which discusses, in further depth, some of the above-mentioned issues relating to nuclearized landscapes, water scarcity management, flood protection, the complex interplay between nuclear and non-nuclear hydraulic construction. Have a look in our list of publications.

Geographies of nuclear energy

By Per Högselius

Nuclear energy is inevitably entangled with both natural and human geographies. Siting of nuclear facilities constitutes a classical dilemma in the history of nuclear energy. Fears of accidents have tended to push nuclear sites as far as possible into geographical peripheries – often to border regions. At the same time there has been a counter-quest for proximity – to resources, labour and knowledge as well as to transport and electricity hubs. As emphasized in the NUCLEARWATERS project, nuclear sites are often dominated by their need for large-scale water resources (for cooling). Hence most nuclear sites are found close to rivers, lakes and the sea. This and other factors make nuclear facilities deeply entangled with regional environments and landscapes. Accidents – and fears of them – turn such spaces into exceptional exclusion (and inclusion) zones. The quest for technological advances in the nuclear field, meanwhile, generate place-specific transnational communities of expertise. At another level, nuclear facilities interact with each other across vast distances through cross-border transports of (and international trade in) uranium and radioactive waste. In nuclearized river basins, nuclear sites become interconnected through scarcity of cooling water and shared risks linked to thermal pollution and radioactive contamination.

Based on these observations, NUCLEARWATERS researcher Alicia Gutting and project leader Per Högselius took the initiative of organizing a panel on the geographies of nuclear energy at the 2022 version of the annual international conference of the Royal Geographical Society and the Institute of British Geographers (RGS-IBG), which was held in London and online from 31 August to 3 September. As it turned out, the proposed topic attracted a large number of scholars, eventually leading us to organize not only one, but two interlinked panels on the topic, with a total of 12 paper presentations:

  • Michiel Bron (Maastricht University, The Netherlands), “Uranium geopolitics: an international perspective on the origins of the infamous uranium cartel”
  • Louis Fagon (EHESS-CIRED, France), “Who is concerned? Defining nuclear territories and their borders: a historical perspective on the nuclearization of the Rhone River, 1970s-1990s”
  • Matteo Gerlini (Sapienza University Rome, Italy), “The creation of the EURATOM research centre in Ispra, Italy: the first effort to achieve a European nuclear community”
  • Alicia Gutting (KTH Royal Institute of Technology, Sweden), “Thermal Pollution – An Overlooked Risk of Nuclear Power Plants?”
  • Christopher Hill (University of South Wales, UK), “Africa’s Last Colony: British Imperialism and the Political Ecology of Uranium in Namibia”
  • Jan-Henrik Meyer (Max-Planck-Institute for Legal History, Germany), “Rules never made: How the European Communities failed to regulate nuclear installations at the border (1975-1980)”
  • Isaiah Bertagnolli (University of Pittsburgh, USA), “Monuments to Eternity: The Funerary Complex of Djoser and The Onkalo Spent Nuclear Fuel Repository”
  • Romain Garcier (Ecole normale superieure de Lyon, France), “Cross-border flows in the nuclear industry, information and metabolism”
  • Jenna Kirk (University of Glasgow, UK), “‘Did I ever tell you about the seal in the forebay?’: (Extra)ordinary histories of the wet nuclear spaces of Hunterston-B Nuclear Power station”
  • Melanie Mbah (Institute for Applied Ecology, Germany) and Sophie Kuppler (Karlsruhe Institute of Technology, Germany), “Governing Nuclear Waste in the Long-Term: On the Role of Place”
  • Teva Meyer (Universite de Haute-Alsace, France), “Bordering nuclearity: very low-level radioactive wastes’ clearance and the production of spatial nuclearities in Germany”
  • Agnes Villette (Winchester School of Art, University of Southampton, UK) “Deciphering thresholds in the nuclear landscape of La Hague”

The conference and the two sessions offered a welcome opportunity to interact with geographers as well as with researchers from several other disciplines, and learn from their insights and approaches. In this way the event seemed to confirm some of our arguments raised in a recently published NUCLEARWATERS article (“How Should History of Technology Be Written?“) on the need for interdisciplinarity and interaction between diverse scholarly communities. In addition, the sessions took us on a tour around the world to numerous nuclearized sites that have so far not been covered in our own research, including the Scottish coast, the Rhône river, La Hague on the French coast, Lago Maggiore on the Italian-Swiss border and Namibia’s uranium mines. Moreover, several presentations dealt with uranium mining or radioactive waste disposal, which triggered our thinking and seemed to point to a possibility of merging research on nuclear waters with that on nuclear fuel by conceptualizing these as two sets of flows that together contribute to the “metabolism” of nuclear energy. It remains to be seen how the geographical inspiration eventually influences the outcome of the NUCLEARWATERS project.

Alicia Gutting and Itay Fischhendler discuss the “Nuclear Rhine”

Last week NUCLEARWATERS and the Division of History of Science, Technology and Environment at KTH had the pleasure of welcoming Professor Itay Fishhendler from the Hebrew University of Jerusalem as a disussant at NUCLEARWATERS PhD student Alicia Gutting’s mid-term seminar.

Alicia’s upcoming thesis has the preliminary title “The Nuclear Rhine” and analyses the history of nuclear energy in the upper part of the Rhine river basin from a transnational point of view, taking into account the experiences of Germany, France, Switzerland, Austria and Liechtenstein. The final thesis will consist of an introductory essay and 4-5 journal articles, two of which were presented in draft form at the seminar. The first article deals with controversies around drinking water in the area around Karlsruhe, home to Germany’s historically important nuclear research centre, which historically hosted several research reactors and a reprocessing facility. The second article targets the problem of thermal pollution along the Upper Rhine, the High Rhine and the Aare, where an impressive number of nuclear reactors were built over the years and an even greater number were planned.

Itay, an expert on transboundary water relations and environmental conflict resolution, emphasized the value of Alicia’s Rhine-oriented research for improving our general understanding of nuclear energy in transboundary river basins, and the crucial value of in-depth historical research in this field for coming to grips with contemporary concerns. The discussion at the seminar came to focus on methodological and theoretical challenges in this context, and on the potential for studies of nuclearized river basins to contribute to theories of transboundary risk and pollution. Other themes that came to the fore included the environmental history notion of a river’s agency in shaping nuclear energy history, and the relationship between thermal pollution, drinking water needs and the quest for scarce cooling water resources.

We will be looking forward to the finalized articles and, eventually, the completion of Alicia’s PhD thesis!

Siegfried Evens and Aditi Verma on the history of nuclear risk governance

By Per Högselius

Last week we had the pleasure of welcoming Aditi Verma from Harvard University’s Belfer Center for Science and International Affairs as a discussant at NUCLEARWATERS PhD student Siegfried Evens‘ mid-term seminar. Siegfried’s PhD thesis will take the form of a monograph with the preliminary title Streams, Steams, and Steel: A History of Nuclear and Non-Nuclear Risk Governance (1850-1990), and seminar participants were able to dive into an ambitious and unusual manuscript in the making. It is certainly not common for nuclear energy historians to trace the history of nuclear things back to the mid-nineteenth century, but in his PhD project Siegfried argues that it is necessary to grasp this early period if we are to make sense of risk governance in the nuclear age. But Siegfried’s work is ambitious not only in a temporal, but also in a geographical sense: it covers three national case studies – centering on the United States, France and Sweden – combined with a strong focus on international organizations like the IAEA and Euratom and, in particular, on how national and transnational developments intersect.

Aditi Verma, who was trained as a nuclear engineer and who has subsequently become strongly engaged with social issues in the nuclear field (see, for example, her recent featured article in Nature, published in connection with the 10th anniversary of the Fukushima tragedy), had done a thorough reading of Siegfried’s text. The discussion centered on several issues. One of the most intriguing points concerned the opportunities and problems for historians who do not actually have any training in science and engineering to go ahead and open up the “black box” of nuclear technology. In much nuclear history-writing to date this box remains disappointingly closed. Here it would seem that Siegfried’s efforts demonstrate the feasibility of doing this, and that his approach can be regarded as methodologically rejuvenating. Another key theme dealt with at the seminar concerned the dichotomy between “nuclear” and “non-nuclear” parts of nuclear power plants and how the boundary and interaction between them can be analyzed from an historical and social science point of view, and how engineering perceptions of “nuclearity” changes over time in relation to risk. Aditi further suggested that Siegfried’s work may have implications for the future, in terms of engineering and policy decisions to be taken.

Following the seminar, Siegfried now aims to undertake further archival research, as far as the pandemic allows, in Sweden, France and the United States. He plans to complete his PhD thesis by 2023/24.

Achim Klüppelberg and Stefan Guth discuss the Soviet Union’s nuclear waters

By Per Högselius

NUCLEARWATERS PhD student Achim Klüppelberg is now half-way through his doctoral studies. Following the KTH tradition, a “mid-term seminar” was organized last week on this occasion, where Achim’s PhD project as it has evolved so far was discussed. For the seminar we invited Stefan Guth from the University of Tübingen to comment on Achim’s work. Stefan is a leading expert on the history of nuclear energy in the Soviet Union, having coordinated the research group “Nuclear technopolitics in the Soviet Union and Beyond” (2018-2020, involving the Universities of Tübingen, Heidelberg and Bern). Stefan has also recently published several articles on the nuclear city of Shevchenko/Aqtau in Kazakhstan, where the water dimension also comes to the fore in very prominent ways.

Achim Klüppelberg’s PhD thesis will not be a traditional monograph, but will take the form of a “compilation thesis”, consisting of a general introductory essay and 4-5 separate journal articles. At the seminar an early draft of the introductory essay and two journal article drafts were discussed. The first article, co-authored with NUCLEARWATERS project leader Per Högselius, develops an historical geography of nuclear energy in the Soviet Union, exploring the centrality of water at macro, meso and micro levels and the co-evolution of the Soviet nuclear energy system as a whole with the envirotechnical systems that can be discerned around specific nuclear facilities. The second article, which is single-authored, uses unique Soviet archival sources to reconstruct the vast “energy complex” that was built in southern Ukraine in the 1970s and 1980s, featuring intricate interaction between nuclear energy, hydropower, energy storage, irrigation, pisciculture and drinking water supply. A third article, co-authored with NUCLEARWATERS researcher Kati Lindström and so far available as a rough sketch, was also briefly touched upon; it explores the proposal to build a nuclear power plant in Soviet Estonia, which eventually did not materialize.

The seminar discussion focused partly on theoretical issues linked to, for example, the concept of “technocratic culture”, and the tension between nuclear energy as a pioneering new technology and its deeper roots in and close links to earlier hydraulic engineering traditions – a recurring theme in the NUCLEARWATERS project as a whole. The discussion also featured several methodological and empirical problems. In particular, access to further Russian and Ukrainian archival sources remains uncertain for the time being, given lingering restrictions in most countries in the context of the pandemic. All in all, it will be exciting to follow Achim’s progress towards a finalized PhD thesis.