Melina Antonia Buns joins NUCLEARWATERS as a post-doctoral researcher

Nuclear-historical research at KTH is expanding! We are happy to announce that Melina Antonia Buns has joined us as a visiting post-doc researcher, based on a collaboration between NUCLEARWATERS, KTH’s Division of History of Science, Technology and Environment and The Greenhouse at the University of Stavanger. Melina was recently awarded a major research grant from the Norwegian Research Council, which will enable her to spend two years at KTH. The grant is linked to her project “Nuclear Nordics: Radioactive Waste Spatialities, Materialities and Societies in the Nordic Region, 1960s-1980s”. Read more about this exciting research endeavor at the website of the Norwegian Research Council.

Melina Antonia Buns at her new KTH office

Melina holds a BA in history, art history and Scandinavian studies from the University of Vienna, an MA in International and Global History and a PhD in history from the University of Oslo. In June 2021 she successfully defended her thesis “Green Internationalists: Nordic Environmental Cooperation, 1967-1988”. At KTH she will make use of her expertise in Nordic environmental history while moving into the nuclear-historical field.

Melina will present her research project “Nuclear Nordics” in the NUCLEARWATERS seminar series very soon. The seminar was originally scheduled for 26 January, but has been postponed. We will soon be back with a new date and time.

Research in Kiev

By Achim Klüppelberg

Every writer knows that there are different phases in our work. Of course, the most important phase is the writing phase. After all, it is our job to produce high-quality texts, is it not? Subsequently, every writer also knows that in order to be able to do so, one needs high-quality sources. While working as an historian, having access to valuable source material is paramount in order to write something relevant for the respective academic field. At the same time, the Covid-19 pandemic has made normal schedules obsolete, and many archival trips had to be cancelled or postponed – in my case, since summer 2020. Therefore, I was very grateful to finally be able to go on a crucial archival trip this November.[1] My destination was the vibrant Ukrainian capital of Kiev, and I had three archives stacked with Soviet-era nuclear documents on my to-do-list. Here, I would like to tell you about my experiences and impressions.

The Dnepr next to Kontraktova Square Metro Station

Naturally, Kiev is a city with a rich history, reflected in different architectural styles, urban planning and monuments. Kiev has a troubled and at the same time glorious history. Being the medieval cradle of Eastern Slavic principalities, states and nations, having formed the mighty Kievan Rus Empire, which through its Baptism led to the Slavic traditions of Eastern Orthodoxy, forming the cultural, political, and industrial capital of Ukrainians, posing as a major battlefield in World War Two, centring Ukraine’s independence after the collapse of the USSR and recently hosting the Maidan protests, this place emanates historic significance at its different sites. Kiev is also a torn city, in which the current economic crisis, the hybrid-war with Russia, antisemitism and nationalism struggle with opposing ideas on the streets. If we live in a time during which Ukrainian history is written in short intervals, then Kiev is the place to be.

My work led me to three archives. The first on the list was the Central State Archive of Supreme Bodies of Power and Government of Ukraine (Центральний державний архів вищих органів влади та управління України, ЦДАВО). Located in South Central Kiev, the archive is based in a complex of several governmental institutions. The reading room offered a rich ensemble of documents from Soviet-Ukrainian ministries and planning institutions, which proved to be invaluable for the immediate progress of my dissertation.

My second station was the Central State Archive of Public Organisations of Ukraine (Центральний державний архів громадських об’єднань України, ЦДАГО України), where I looked into files from the Communist Party. The archive was located next to the Kiev Region State Administration, along which the massive Lesi Ukrainky Boulevard allowed dozens of cars to speed on ten lanes towards the city centre. Here, I was less fortunate. The CP Ukraine files I ordered offered insights into internal party affairs, but not into any planning aspects of Soviet Ukraine’s energy system.

State Archive of Kiev Province building plate

My third and last station on this trip was the State Archive of Kiev Province (Державний архів Київської області, ДАКО). Inspired by Louis Fagon’s approach of visiting local and regional archives in order to circumvent the occasional quietness in central documents on nuclear issues, I examined local party protocols of the towns of Pripyat and Chernobyl to find out more about water amelioration processes and different important stages of the construction of the Chernobyl Nuclear Power Plant. Here, lots of exciting issues came to light and I am looking forward to incorporate them into my next article.

Apart from those visits to the archives, I was also able to see the exhibitions at the Holodomor and the Chernobyl museums. Both were very impressive. The Holodomor Museum was located in the Park of Eternal Glory overlooking the Dnepr, in which apart from the museum many memorials for Ukrainian nationalists were placed. There, visitors would see an exhibition showing the horrors of the forced famine in Stalin’s Soviet Union from 1932-33. This was based on many personal testimonials and artefacts from survivors of these times. Their main message was that it was a planned famine created by Moscow as a way to subdue ethnic Ukrainians.

I was very surprised, in a positive way, by the Chernobyl Museum. There, they had collected multiple artefacts of the main protagonists of the catastrophe, such as identity cards and passports from Deputy Chief Engineer Anatoly Dyatlov, or accident-shift-leader Aleksandr Akimov. Selected archival documents along newspaper articles were also on display. Next to them, one could see the flags of the firefighter brigades, uniforms, respirators, and dosimeters. Two whole sections were dedicated to the construction of the first and the second sarcophagus. Following were some dedications to the international solidarity in regard to the mitigation of the consequences of the accident as well as the ongoing help for chronically sick people, such as the “Children of Chernobyl” network. Another room was dedicated to the effects of radionuclides dispersed by the accident to the environment and human society. Here the focus was not to tell a uniquely Ukrainian story, but instead to document the disaster from an international point of view.

Summarising, I am very grateful for this opportunity that arose at this crucial state in my dissertation. Kiev is an exciting place, where so many things have happened and are happening right now. It is definitely worth a trip.

[1] 03 -20 November 2021.

Exploring nuclear Germany

By Per Högselius

As the most recent wave of the corona pandemic rolls in over Europe, it seems that much of the past summer and autumn was a narrow window of opportunity for international travel. I now feel happy that I managed to make use of that window.

In late September I went to Regensburg to participate in a conference on infrastructures in East and Southeast Europe (see my separate blogpost on that). After the conference, I stayed on in Bavaria for a couple of days. I rented a car and a bike and went to take a close look at the water supply arrangements for three German nuclear power plants and the nuclearized landscapes that have emerged as a result of nuclear construction there from the 1960s to the 1980s.

Gundremmingen is the only German nuclear power plant situated directly on the Danube. It started to be built already in 1962 and was one of Germany’s first nuclear power plants. There was a fierce debate during construction about possible contamination of the region’s drinking water. Less known is that plant construction demanded a complex reengineering of the Danube, which was dammed upstreams and also a few kilometres downstream to create a reliable and regular water flow for cooling the reactors. This generated an artificial water reservoir, the shores of which, as I was able to experience directly, are nowadays still very popular places for various leisure activities. Nuclear hydraulic engineers also built a canal to divert Danube water to the nuclear plant. The early pioneering reactor at Gundremmingen was shut down long ago. However, the plant was expanded through the addition of two much more powerful reactors: one boiling water reactor (seen to the left in one of the pictures below) and one pressurized water reactor (seen to the right), which today makes the plant area look very diverse. The pressurized water reactor was closed in 2017. The boiling water reactor, supported by one cooling tower, is still in operation, but like all remaining German NPPs, its days are numbered.

The Isar nuclear power plant is named after the Danube tributary on which it was built. Here, too, nuclear construction was intimately linked to other hydraulic projects aimed at “taming” the river. The Isar was dammed and equipped with hydroelectric turbines (see the image to the upper left), which now still contribute to the safety of the nuclear station, because they ensure that electricity will always be available locally even in the case of a regional power failure. This made it unnecessary for the nuclear operators to invest in emergency diesel generators. The Isar plant was originally designed for one boiling water reactor only, for which a less powerful and very compact type of cooling towers were built (lower left, to the right of the reactor building); these were used only when the Isar’s water flow was insufficient. The high-rise cooling tower that can be seen across much of Bavaria was constructed only when a further reactor, of the pressurized water type, was added later on (right). The boiling water reactor was shut down immediately after the 2011 Fukushima disaster. The pressurized water reactor is supposedly still in operation, but apparently not on the day of my visit, judging by the lack of “smoke” (water vapour) from the cooling tower.

The Grafenrheinfeld NPP is also in Bavaria, but further north, in Lower Franconia, where the inhabitants usually don’t think of themselves as “Bavarians”. This cultural divide largely coincides with the physical drainage divide between the Rhine and the Danube river basins. Hence this nuclear station, which is no longer in operation (having been shut down in 2015), is situated not in the Danube basin, but on the Main, the Rhine’s most important tributary. When construction started in 1974 the Main was already a suitable river for cooling water supplies. This was because Germany had invested enormously in the 1950s and 1960s in making the Main navigable all the way up to Bamberg, taming the river and regularizing its water flow with the help of no fewer than 34 weirs and locks. The river is now part of a system that interconnects the Rhine and Danube river basins, the centrepiece of which is the Rhein-Main-Danube Canal.

A month later I returned to Germany. I first spent a few days at the German Federal Archives in Koblenz, which turned out to be a treasure trove for nuclear-historical research. I then went up (or rather down) to northern Germany and the Lower Elbe region. There I went to see how the Stade, Brokdorf and Brunsbüttel nuclear power plants (of which only Brokdorf is still in operation, but only until the end of this year) were integrated into this North Sea estuary. In contrast to the plants erected along the Danube, Isar and Main further south, the main challenge here seemed to be flood (rather than water scarcity) management. The Lower Elbe region is historically very much a marshland and all nuclear – indeed, all industrial – projects are dependent on a reliable drainage infrastructure. Like in the Netherlands, that infrastructure is critically dependent on large pumps for lifting water, in this case into the Elbe (see the image below, far left). The nuclear stations along the Lower Elbe also made use of a pre-nuclear infrastructure of earthen dikes, which are typically 5 meters tall (upper and lower right). These have always formed the centerpiece of nuclear flood protection and hence they can be regarded as components in the nuclear safety system. However, after the 1999 flooding of the Blayais NPP in France, a plant that is located in an estuary very similar to that of the Elbe, German regulatory authorities started looking into the deeper history of flooding events in the North Sea and how new such events might potentially cause havoc to the Lower Elbe NPPs: would they be able to cope with an event on a par with the famous Storegga slide, which is believed to have caused a huge tsunami throughout the North Sea region back in 6200 BC?

In early 2022 I will publish an article in Technology & Culture which discusses, in further depth, some of the above-mentioned issues relating to nuclearized landscapes, water scarcity management, flood protection, the complex interplay between nuclear and non-nuclear hydraulic construction. Have a look in our list of publications.

Geographies of nuclear energy

By Per Högselius

Nuclear energy is inevitably entangled with both natural and human geographies. Siting of nuclear facilities constitutes a classical dilemma in the history of nuclear energy. Fears of accidents have tended to push nuclear sites as far as possible into geographical peripheries – often to border regions. At the same time there has been a counter-quest for proximity – to resources, labour and knowledge as well as to transport and electricity hubs. As emphasized in the NUCLEARWATERS project, nuclear sites are often dominated by their need for large-scale water resources (for cooling). Hence most nuclear sites are found close to rivers, lakes and the sea. This and other factors make nuclear facilities deeply entangled with regional environments and landscapes. Accidents – and fears of them – turn such spaces into exceptional exclusion (and inclusion) zones. The quest for technological advances in the nuclear field, meanwhile, generate place-specific transnational communities of expertise. At another level, nuclear facilities interact with each other across vast distances through cross-border transports of (and international trade in) uranium and radioactive waste. In nuclearized river basins, nuclear sites become interconnected through scarcity of cooling water and shared risks linked to thermal pollution and radioactive contamination.

Based on these observations, NUCLEARWATERS researcher Alicia Gutting and project leader Per Högselius took the initiative of organizing a panel on the geographies of nuclear energy at the 2022 version of the annual international conference of the Royal Geographical Society and the Institute of British Geographers (RGS-IBG), which was held in London and online from 31 August to 3 September. As it turned out, the proposed topic attracted a large number of scholars, eventually leading us to organize not only one, but two interlinked panels on the topic, with a total of 12 paper presentations:

  • Michiel Bron (Maastricht University, The Netherlands), “Uranium geopolitics: an international perspective on the origins of the infamous uranium cartel”
  • Louis Fagon (EHESS-CIRED, France), “Who is concerned? Defining nuclear territories and their borders: a historical perspective on the nuclearization of the Rhone River, 1970s-1990s”
  • Matteo Gerlini (Sapienza University Rome, Italy), “The creation of the EURATOM research centre in Ispra, Italy: the first effort to achieve a European nuclear community”
  • Alicia Gutting (KTH Royal Institute of Technology, Sweden), “Thermal Pollution – An Overlooked Risk of Nuclear Power Plants?”
  • Christopher Hill (University of South Wales, UK), “Africa’s Last Colony: British Imperialism and the Political Ecology of Uranium in Namibia”
  • Jan-Henrik Meyer (Max-Planck-Institute for Legal History, Germany), “Rules never made: How the European Communities failed to regulate nuclear installations at the border (1975-1980)”
  • Isaiah Bertagnolli (University of Pittsburgh, USA), “Monuments to Eternity: The Funerary Complex of Djoser and The Onkalo Spent Nuclear Fuel Repository”
  • Romain Garcier (Ecole normale superieure de Lyon, France), “Cross-border flows in the nuclear industry, information and metabolism”
  • Jenna Kirk (University of Glasgow, UK), “‘Did I ever tell you about the seal in the forebay?’: (Extra)ordinary histories of the wet nuclear spaces of Hunterston-B Nuclear Power station”
  • Melanie Mbah (Institute for Applied Ecology, Germany) and Sophie Kuppler (Karlsruhe Institute of Technology, Germany), “Governing Nuclear Waste in the Long-Term: On the Role of Place”
  • Teva Meyer (Universite de Haute-Alsace, France), “Bordering nuclearity: very low-level radioactive wastes’ clearance and the production of spatial nuclearities in Germany”
  • Agnes Villette (Winchester School of Art, University of Southampton, UK) “Deciphering thresholds in the nuclear landscape of La Hague”

The conference and the two sessions offered a welcome opportunity to interact with geographers as well as with researchers from several other disciplines, and learn from their insights and approaches. In this way the event seemed to confirm some of our arguments raised in a recently published NUCLEARWATERS article (“How Should History of Technology Be Written?“) on the need for interdisciplinarity and interaction between diverse scholarly communities. In addition, the sessions took us on a tour around the world to numerous nuclearized sites that have so far not been covered in our own research, including the Scottish coast, the Rhône river, La Hague on the French coast, Lago Maggiore on the Italian-Swiss border and Namibia’s uranium mines. Moreover, several presentations dealt with uranium mining or radioactive waste disposal, which triggered our thinking and seemed to point to a possibility of merging research on nuclear waters with that on nuclear fuel by conceptualizing these as two sets of flows that together contribute to the “metabolism” of nuclear energy. It remains to be seen how the geographical inspiration eventually influences the outcome of the NUCLEARWATERS project.

Alicia Gutting and Itay Fischhendler discuss the “Nuclear Rhine”

Last week NUCLEARWATERS and the Division of History of Science, Technology and Environment at KTH had the pleasure of welcoming Professor Itay Fishhendler from the Hebrew University of Jerusalem as a disussant at NUCLEARWATERS PhD student Alicia Gutting’s mid-term seminar.

Alicia’s upcoming thesis has the preliminary title “The Nuclear Rhine” and analyses the history of nuclear energy in the upper part of the Rhine river basin from a transnational point of view, taking into account the experiences of Germany, France, Switzerland, Austria and Liechtenstein. The final thesis will consist of an introductory essay and 4-5 journal articles, two of which were presented in draft form at the seminar. The first article deals with controversies around drinking water in the area around Karlsruhe, home to Germany’s historically important nuclear research centre, which historically hosted several research reactors and a reprocessing facility. The second article targets the problem of thermal pollution along the Upper Rhine, the High Rhine and the Aare, where an impressive number of nuclear reactors were built over the years and an even greater number were planned.

Itay, an expert on transboundary water relations and environmental conflict resolution, emphasized the value of Alicia’s Rhine-oriented research for improving our general understanding of nuclear energy in transboundary river basins, and the crucial value of in-depth historical research in this field for coming to grips with contemporary concerns. The discussion at the seminar came to focus on methodological and theoretical challenges in this context, and on the potential for studies of nuclearized river basins to contribute to theories of transboundary risk and pollution. Other themes that came to the fore included the environmental history notion of a river’s agency in shaping nuclear energy history, and the relationship between thermal pollution, drinking water needs and the quest for scarce cooling water resources.

We will be looking forward to the finalized articles and, eventually, the completion of Alicia’s PhD thesis!

Siegfried Evens and Aditi Verma on the history of nuclear risk governance

By Per Högselius

Last week we had the pleasure of welcoming Aditi Verma from Harvard University’s Belfer Center for Science and International Affairs as a discussant at NUCLEARWATERS PhD student Siegfried Evens‘ mid-term seminar. Siegfried’s PhD thesis will take the form of a monograph with the preliminary title Streams, Steams, and Steel: A History of Nuclear and Non-Nuclear Risk Governance (1850-1990), and seminar participants were able to dive into an ambitious and unusual manuscript in the making. It is certainly not common for nuclear energy historians to trace the history of nuclear things back to the mid-nineteenth century, but in his PhD project Siegfried argues that it is necessary to grasp this early period if we are to make sense of risk governance in the nuclear age. But Siegfried’s work is ambitious not only in a temporal, but also in a geographical sense: it covers three national case studies – centering on the United States, France and Sweden – combined with a strong focus on international organizations like the IAEA and Euratom and, in particular, on how national and transnational developments intersect.

Aditi Verma, who was trained as a nuclear engineer and who has subsequently become strongly engaged with social issues in the nuclear field (see, for example, her recent featured article in Nature, published in connection with the 10th anniversary of the Fukushima tragedy), had done a thorough reading of Siegfried’s text. The discussion centered on several issues. One of the most intriguing points concerned the opportunities and problems for historians who do not actually have any training in science and engineering to go ahead and open up the “black box” of nuclear technology. In much nuclear history-writing to date this box remains disappointingly closed. Here it would seem that Siegfried’s efforts demonstrate the feasibility of doing this, and that his approach can be regarded as methodologically rejuvenating. Another key theme dealt with at the seminar concerned the dichotomy between “nuclear” and “non-nuclear” parts of nuclear power plants and how the boundary and interaction between them can be analyzed from an historical and social science point of view, and how engineering perceptions of “nuclearity” changes over time in relation to risk. Aditi further suggested that Siegfried’s work may have implications for the future, in terms of engineering and policy decisions to be taken.

Following the seminar, Siegfried now aims to undertake further archival research, as far as the pandemic allows, in Sweden, France and the United States. He plans to complete his PhD thesis by 2023/24.

Achim Klüppelberg and Stefan Guth discuss the Soviet Union’s nuclear waters

By Per Högselius

NUCLEARWATERS PhD student Achim Klüppelberg is now half-way through his doctoral studies. Following the KTH tradition, a “mid-term seminar” was organized last week on this occasion, where Achim’s PhD project as it has evolved so far was discussed. For the seminar we invited Stefan Guth from the University of Tübingen to comment on Achim’s work. Stefan is a leading expert on the history of nuclear energy in the Soviet Union, having coordinated the research group “Nuclear technopolitics in the Soviet Union and Beyond” (2018-2020, involving the Universities of Tübingen, Heidelberg and Bern). Stefan has also recently published several articles on the nuclear city of Shevchenko/Aqtau in Kazakhstan, where the water dimension also comes to the fore in very prominent ways.

Achim Klüppelberg’s PhD thesis will not be a traditional monograph, but will take the form of a “compilation thesis”, consisting of a general introductory essay and 4-5 separate journal articles. At the seminar an early draft of the introductory essay and two journal article drafts were discussed. The first article, co-authored with NUCLEARWATERS project leader Per Högselius, develops an historical geography of nuclear energy in the Soviet Union, exploring the centrality of water at macro, meso and micro levels and the co-evolution of the Soviet nuclear energy system as a whole with the envirotechnical systems that can be discerned around specific nuclear facilities. The second article, which is single-authored, uses unique Soviet archival sources to reconstruct the vast “energy complex” that was built in southern Ukraine in the 1970s and 1980s, featuring intricate interaction between nuclear energy, hydropower, energy storage, irrigation, pisciculture and drinking water supply. A third article, co-authored with NUCLEARWATERS researcher Kati Lindström and so far available as a rough sketch, was also briefly touched upon; it explores the proposal to build a nuclear power plant in Soviet Estonia, which eventually did not materialize.

The seminar discussion focused partly on theoretical issues linked to, for example, the concept of “technocratic culture”, and the tension between nuclear energy as a pioneering new technology and its deeper roots in and close links to earlier hydraulic engineering traditions – a recurring theme in the NUCLEARWATERS project as a whole. The discussion also featured several methodological and empirical problems. In particular, access to further Russian and Ukrainian archival sources remains uncertain for the time being, given lingering restrictions in most countries in the context of the pandemic. All in all, it will be exciting to follow Achim’s progress towards a finalized PhD thesis.

Fukushima – 10 Years Later

By Achim Klüppelberg

On 11 March 2011, Japan’s east coast fell victim to the Tōhoku earthquake. The earth shook for several minutes, causing a huge tsunami, 370 km from Tokyo in the Pacific. As a consequence of both, earthquake and tsunami, several nuclear power plants suffered damage. The one most affected was Fukushima-Daiichi. In the course of the following days, three of six nuclear reactors suffered meltdowns. In reactor four, serious damage through hydrogen explosions occurred.

How was that possible? Japan is located in an area highly prone to earthquakes. In the past, there were multiple occasions on which earthquakes were followed by tsunamis, causing substantial damage to the built environment along Japan’s coasts. When building a nuclear power plant, designers and decision-makers, clearly, need to minimize the plant’s vulnerability to external events. A key question is how to do this when it comes to events that occur only once in a century, millennium, or every ten thousand years.

The reactors in Fukushima-Daiichi were constructed between 1967 and 1979. This was also the time when the Chernobyl nuclear power plant started to be built. In an effort to increase safety and in stark contrast to their Soviet counterparts, the Japanese designed their reactors with containments, which added a layer of protection against the unwanted spread of radionuclides. While the Soviet Union also built power plants in seismically active areas – notably in Armenia – the Japanese plants had higher standards when it came to anti-earthquake safety. All in all, the Japanese reactors were state-of-the-art facilities and with regard to safety on par with those in countries such as the United States, France or Sweden.

https://upload.wikimedia.org/wikipedia/commons/f/f5/HD.15.055_%2811839699333%29.jpg
The construction site of the Fukushima-Daiichi Nuclear Power Plant around 1971. Author: U.S. Department of Energy, Public Domain.

So what happened? In essence, safety considerations were not taking exceptional disasters of the scope of the March 2011 earthquake and tsunami into account. In other words, the magnitude of the earthquake and the height of the tsunami were simply greater than the maximum anticipated strain on the nuclear power plant. The plant operator, TEPCO, did not consider an earthquake of magnitude 9 to be a “credible event” in the Japan Trench, as the IAEA concluded in its 2015 report on the accident. TEPCO did not find it economically justifiable to invest in measures to protect the plant against such an event. As NUCLEARWATERS project leader Per Högselius writes in a forthcoming article, the company did consult historical earthquake and tsunami reports, but the conclusion was that although immense tsunamis did occur from time to time along the coast, no tsunami higher than 5.7 meters had ever been recorded in the particular stretch of coast where the Fukushima NPP was located.

Soon, a Japanese parliamentary panel declared that the disaster was not only a natural one. It was also a human-made one, because official institutions believed that measures taken were sufficient and that the cost-safety calculations were appropriate. This is correct, since humans created this envirotechnical system, in which the nuclear power plant was integrated into the waters of the Pacific Ocean.

Environmental historian Sarah Pritchard (Confluence) takes inspiration from Charles Perrow’s normal accident theory and Thomas P. Hughes analyses of technological systems. Following these scholars, accidents inevitably happen in complex human-made systems. The creation of the nuclear technological system, of which Fukushima-Daiichi was part, embedded high-risk large-scale technology into an environment prone to natural disasters. Pritchard argues that the Tōhoku earthquake and the ensuing tsunami did not rupture the envirotechnical system between the power plant and the Pacific Ocean, but instead altered it. Water is still being used as a coolant, only this time the reactor has emitted radioactive substances into the sea.

For Pritchard, both the nuclear station and the aquatic system are still bound to and interwoven with each other. This becomes clear when studies find tritium in the groundwater, showing that the envirotechnical system extends beyond the obvious connection to the Pacific. This further leads to the question of how to deal with the accumulating nuclear waste from the plant, much of it in the form of contaminated water stored in tanks on site.

For TEPCO water was both a saviour that made it possible to re-establish cooling of the molten reactor cores and a medium of contamination at the same time. Currently, the operator struggles with securing the rests of the destroyed reactor cores and storing them somehow safely on land. Radioactivity prevents a lot of the decommissioning work. The reactor cores need permanent cooling to prevent further uncontrolled nuclear reactions. Due to the initial destruction of the cooling circuits and the following makeshift replacements, water was not kept within and reused as coolant, as it leaked into the reactor building. From there, it was pumped out, treated and stored outside the plant. On several occasions, it was ultimately dumped into the Pacific. At the time of writing, no end to this problem is in sight.

In connection with the ten-year-anniversary of this tragedy, I was interviewed by the local Greenpeace Group Gießen, Germany. We discussed issues of safety, the current situation at Fukushima and the exciting question of whether nuclear energy could be useful in the context of the current climate crisis.

The interview can be watched here.

This year, we will also commemorate the 35th anniversary of the Chernobyl disaster. Therefore, it makes sense to reflect upon the role that nuclear energy plays in global and European energy supply. This is even more true in view of the fact that the nuclear industries in France, Britain, Sweden and other countries face tough decisions whether or not to reinvest into the aging nuclear infrastructure, the alternative being renewable energy sources.

Lithuania’s nuclear history, covid-19 and the search for archival sources

By Achim Klüppelberg

The current covid-19 crisis challenges our usual ways of conducting research. While the spring term might have gone by without too many impairments (although digitisation and the cancellation of conferences and workshops leaves some marks), by now several researchers face the problem of inaccessible archives. Albeit this also stalls my work, I was lucky to slip through a narrow window of opportunity. While spending the summer in Germany, where infection numbers were at that time considerably low, I was able to profit from Lithuania’s State Archives’ reopening. After brief consultations with my supervisors and our administration it became clear: I had green light to finally dig again into Soviet nuclear documents.

On 12 August I arrived in Vilnius. At first, I made myself familiar with the archival opportunities this city offers. Unfortunately, my 10-day-visit did not suffice to exhaust the various archives. I first visited the Modern State Archive. Despite the fact that they eventually did not have the documents I was searching for, they provided me with a contact at the Archive of Technical Documentation at Ignalina Nuclear Power Plant. This was where I headed next to.

Ignalina is actually a town 50 km south of nuclear power plant and has no obvious connection to it. The plant was earlier called (in Russian) the Drukshaiskaya NPP, after the lake that provided it with ample cooling water: Lake Drūkšiai. However, naming it after Ignalina seemed easier.

After a two-hour train ride I reached the nuclear town of Visaginas. Visaginas was earlier called Sniečkus after a former first secretary of the Lithuanian branch of the Soviet Communist Party. It was built to host about 35,000 people, but the population has now fallen to 18,000. Visaginas provided the base for people employed at Ignalina NPP and is still today mostly Russian-speaking. Obviously, the nuclera power plant shaped the vibe in Visaginas in many respects.

Taking advice from my fellow PhD student at KTH, Daniele Valisena, I explored the two-hour way from Visaginas to the power plant on foot. It was a very scenic experience and let me soon astray from the main road leading to the plant. It was very sunny and warm. Not many people were around in this somehow eerie landscape in the northeastern corner of Lithuania, close to Latvia’s Daugavpils and Belarus’ Braslaŭ.

I found myself walking through a small dacha village called Vishnya. Here, people were gardening and small-scale farming a short distance from the nuclear power plant, which hosted the biggest reactors of the world during the 1980s. It was a strange feeling, in view of a history of incidents and accidents at the plant. From the village I went through a forest towards the plant. Soon I reached a beautiful small cemetery with carefully kept graves. While Lake Drūkšiai was supposed to be very close to me, I did neither see its waters nor noticed its presence in any other way.

After a thorough fight with mosquitoes for the sovereignty over my legs, arms and neck, I soon saw the tops of the power plant’s huge transformer station. Given my experiences with Russian security, I was actually expecting someone to stop me, as I slowly but steadily approached the nuclear power plant. But nothing happened. When Lithuania entered the European Union, it had to agree to decommission the power plant due to the similarity of its reactors with those at Chernobyl. More than three quarters of the money for decommissioning came from the European Union, which, together with Lithuania’s turn towards a freer society, changed priorities from secrecy to openness. Soon I reached unhindered the formal entrance of the power plant.

After a short orientation, I entered the Archive of Technical Documentation and spoke with my contact there. Although I was provided with additional valuable literature and information, I was put off until I would be granted formal access by the leadership of the plant. This could not be acquired while I was in Lithuania, but I might get the chance to come back and follow up on this lead in the future.

On my way back I walked past an installation for the storage of low-level radioactive waste, with a conveyor belt stemming directly from the main building of the plant. This made me wonder what actually was going on inside and how the progress of the decommissioning was getting along. Opinions are split on this issue.

After my trip to Ignalina I spent the rest of my time searching through files in Lithuania’s Central State Archives. A personal highlight was here the discussion of how to make Ignalina NPP safer in the wake of the aftermath of the Chernobyl catastrophe. It was very fortunate that I was able to visit Lithuania. The trip provided me with a first archival overview, some crucial source documents, and very valuable impressions and photographs. Hopefully, we can soon all go back to our data, sources, and interview partners as we used to do. There is so much more to explore.

Interview with Andrei Stsiapanau on the Politics of Nuclear Waste

By Alicia Gutting

Nuclear energy is a highly debated field and depending on the societal context usually either embraced or fully rejected. From an outsider position it sometimes seems as if there was no in between: you are either pro- or anti-nuclear. This does not solely apply to times of active nuclear energy generation, but it also affects the future and finding solutions for safe storage of nuclear waste. In today’s interview with Andrei Stsiapanau we will hear more about the nuclear debate in the former Soviet Union. Andrei is a guest in our Nuclearwaters project since January 2020 and he is a scholarship holder of the Swedish Institute Visby Scholarship Program for Senior Researchers. He researches how nuclear energy is being socially and politically debated in Russia, Belarus and Lithuania and he is especially interested in the politics of nuclear waste in Russia, Lithuania and Sweden.

Alicia Gutting: Andrei, what have you been working on in the past months?

Andrei Stsiapanau: During the last months I have been working on the nuclear waste management issues in Russia as well as in Lithuania and Sweden. When more and more nuclear facilities throughout the world enter the stage of decommissioning, it is becoming particularly urgent to find sustainable solutions to the issue of nuclear waste. The list of possible technical solutions for spent nuclear fuel and other types of waste include deep geological disposal after reprocessing (favoured in France, Japan, and UK); direct deep geological disposal (favoured in Belgium, Sweden, Finland, Germany, USA and Czech Republic); surface long-term storage (favoured in the Netherlands, Italy and Spain). Each of these solutions translates into different ways on how to communicate, classify and govern nuclear waste in a particular country.

My research is focusing on how nuclear waste issues are communicated in various techno-political contexts. While studying how nuclear waste issues are being negotiated with communities in Russia, I discovered that natural resources like clay are used within nuclear waste discourses to mitigate the risk of potential radioactive contamination. It was my starting point to investigate how natural resources are used in various discourses about nuclear waste to make it less dangerous and harmful for people and environments. In the cases of Lithuania and Sweden, I am investigating how, through awareness and information campaigns, risks associated with nuclear waste are mediated and mitigated to transform the hazardous nuclear objects into manageable waste.

AG: What role does clay play?

AS: According to numerous researches on the role of the natural barrier in the nuclear waste disposal system, clay as well as crystalline rock are considered as a retardation medium for radionuclides migration. The multi barrier protection within nuclear waste technology illustrates how natural barriers or the geology of the disposal site will retard or mediate for both fluid flow and radionuclides migration in case of the engineering layer decay. This kind of technical vision of the disposal process promotes the natural protection layer as a reliable tool for absorption and immobilization of radioactivity. Geological and chemical studies of clay rock in various sites in the United States, France, Belgium, Canada and Russia show that clay has a number of absorption properties valuable for immobilization of the radioactive elements in the geomedia in case of the technical barrier decay. Thus, clay has become employed as a part of the nuclear waste management process. It represents a tool for absorption, immobilization and confinement of radioactivity. Including clay in the whole process of the nuclear decommission and decontamination makes it possible to reconsider the role of natural resources and materials in nuclear waste technologies and multi-barrier protection discourses.

AG: Are there differences in the Swedish and the Lithuanian (political) approach?

AS: Nuclear waste management systems in Sweden and Lithuania are developing in the context of decommissioning and nuclear phase out but following different trajectories and guidelines. The final repository for short-lived radioactive waste located at Forsmark in the municipality of Östhammar started operating in 1988. Lithuania is only now entering the phase of the construction of the landfill repositories for low and medium radioactive waste, and the construction of the geological disposal is programmed for after 2045. The Swedish approach represents an advanced example of nuclear waste management, based on the long-term experience of scientific research, transparent decision-making and continued reliance on public opinion and participation. Some connections in sharing nuclear waste management technology and experience exist between these two Baltic Sea countries. The Swedish nuclear waste authority, SKB, has been involved in the assessment of the existing nuclear waste facilities at the Ignalina NPP site in Lithuania since the 1990s. Swedish nuclear research and governance institutions continue to contribute to the transfer of knowledge and expertise in nuclear waste management taking part in numerous joint international research projects (BEACON; EURAD).

AG: What role does environmentalism play in the debate?

AS: As the two countries are at different stages of implementation of nuclear waste programs, it illustrates different levels of public engagement in the site selection process and environmental impact assessment of the radioactive waste disposals. In Sweden environmental issues are at the core of the public debate and concerns about the nuclear waste management program and are involving various actors, from local communities to International NGOs and leading national media outlets. In Lithuania environmental issues are less questioned, site selection is not contested and public participation is limited to local communities of the nuclear site with scarce media coverage. I suppose this situation will change with the start of a public discussion about the site selection for geological disposal of high radioactive waste and SNF and its environmental impact assessment. This debate will expand nuclear waste issues to the national scale. Considering environmentalism not only as participatory but also as scholarly concern, at the moment there are relatively few studies in environmental humanities and history about the uses of the natural resources in nuclear waste confinement and its impact on social and natural landscapes.

AG: Do people in the two countries differ in their risk perception?

AS: Different levels of public engagement in the nuclear decision-making illustrates different public opinion dynamics as well as public perception of nuclear risks. In Sweden due to the nuclear phase-out decision in 1980 and to the high impact of environmental movements, critical voices are prevailing the publicity concerning nuclear waste. In Lithuania the nuclear energy use became public only in the 1990s after the reestablishment of the independence and were associated mostly with Chernobyl disaster risks and anti-communist, sovereignty claims. During the transition period, the use of nuclear energy was considered as necessary for the economic and social developments of the country; political personnel, nuclear engineers and Lithuanian citizens embraced the energy produced by the Ignalina NPP as a national resource. The referendums about nuclear energy uses in Lithuania in 2008 and 2012 after the start of the decommissioning of the Ignalina NPP showed a rather radical change from pro- to anti-nuclear attitudes challenging the plan to construct a new NPP in the country.