Lithuania’s nuclear history, covid-19 and the search for archival sources

By Achim Klüppelberg

The current covid-19 crisis challenges our usual ways of conducting research. While the spring term might have gone by without too many impairments (although digitisation and the cancellation of conferences and workshops leaves some marks), by now several researchers face the problem of inaccessible archives. Albeit this also stalls my work, I was lucky to slip through a narrow window of opportunity. While spending the summer in Germany, where infection numbers were at that time considerably low, I was able to profit from Lithuania’s State Archives’ reopening. After brief consultations with my supervisors and our administration it became clear: I had green light to finally dig again into Soviet nuclear documents.

On 12 August I arrived in Vilnius. At first, I made myself familiar with the archival opportunities this city offers. Unfortunately, my 10-day-visit did not suffice to exhaust the various archives. I first visited the Modern State Archive. Despite the fact that they eventually did not have the documents I was searching for, they provided me with a contact at the Archive of Technical Documentation at Ignalina Nuclear Power Plant. This was where I headed next to.

Ignalina is actually a town 50 km south of nuclear power plant and has no obvious connection to it. The plant was earlier called (in Russian) the Drukshaiskaya NPP, after the lake that provided it with ample cooling water: Lake Drūkšiai. However, naming it after Ignalina seemed easier.

After a two-hour train ride I reached the nuclear town of Visaginas. Visaginas was earlier called Sniečkus after a former first secretary of the Lithuanian branch of the Soviet Communist Party. It was built to host about 35,000 people, but the population has now fallen to 18,000. Visaginas provided the base for people employed at Ignalina NPP and is still today mostly Russian-speaking. Obviously, the nuclera power plant shaped the vibe in Visaginas in many respects.

Taking advice from my fellow PhD student at KTH, Daniele Valisena, I explored the two-hour way from Visaginas to the power plant on foot. It was a very scenic experience and let me soon astray from the main road leading to the plant. It was very sunny and warm. Not many people were around in this somehow eerie landscape in the northeastern corner of Lithuania, close to Latvia’s Daugavpils and Belarus’ Braslaŭ.

I found myself walking through a small dacha village called Vishnya. Here, people were gardening and small-scale farming a short distance from the nuclear power plant, which hosted the biggest reactors of the world during the 1980s. It was a strange feeling, in view of a history of incidents and accidents at the plant. From the village I went through a forest towards the plant. Soon I reached a beautiful small cemetery with carefully kept graves. While Lake Drūkšiai was supposed to be very close to me, I did neither see its waters nor noticed its presence in any other way.

After a thorough fight with mosquitoes for the sovereignty over my legs, arms and neck, I soon saw the tops of the power plant’s huge transformer station. Given my experiences with Russian security, I was actually expecting someone to stop me, as I slowly but steadily approached the nuclear power plant. But nothing happened. When Lithuania entered the European Union, it had to agree to decommission the power plant due to the similarity of its reactors with those at Chernobyl. More than three quarters of the money for decommissioning came from the European Union, which, together with Lithuania’s turn towards a freer society, changed priorities from secrecy to openness. Soon I reached unhindered the formal entrance of the power plant.

After a short orientation, I entered the Archive of Technical Documentation and spoke with my contact there. Although I was provided with additional valuable literature and information, I was put off until I would be granted formal access by the leadership of the plant. This could not be acquired while I was in Lithuania, but I might get the chance to come back and follow up on this lead in the future.

On my way back I walked past an installation for the storage of low-level radioactive waste, with a conveyor belt stemming directly from the main building of the plant. This made me wonder what actually was going on inside and how the progress of the decommissioning was getting along. Opinions are split on this issue.

After my trip to Ignalina I spent the rest of my time searching through files in Lithuania’s Central State Archives. A personal highlight was here the discussion of how to make Ignalina NPP safer in the wake of the aftermath of the Chernobyl catastrophe. It was very fortunate that I was able to visit Lithuania. The trip provided me with a first archival overview, some crucial source documents, and very valuable impressions and photographs. Hopefully, we can soon all go back to our data, sources, and interview partners as we used to do. There is so much more to explore.

Interview with Andrei Stsiapanau on the Politics of Nuclear Waste

By Alicia Gutting

Nuclear energy is a highly debated field and depending on the societal context usually either embraced or fully rejected. From an outsider position it sometimes seems as if there was no in between: you are either pro- or anti-nuclear. This does not solely apply to times of active nuclear energy generation, but it also affects the future and finding solutions for safe storage of nuclear waste. In today’s interview with Andrei Stsiapanau we will hear more about the nuclear debate in the former Soviet Union. Andrei is a guest in our Nuclearwaters project since January 2020 and he is a scholarship holder of the Swedish Institute Visby Scholarship Program for Senior Researchers. He researches how nuclear energy is being socially and politically debated in Russia, Belarus and Lithuania and he is especially interested in the politics of nuclear waste in Russia, Lithuania and Sweden.

Alicia Gutting: Andrei, what have you been working on in the past months?

Andrei Stsiapanau: During the last months I have been working on the nuclear waste management issues in Russia as well as in Lithuania and Sweden. When more and more nuclear facilities throughout the world enter the stage of decommissioning, it is becoming particularly urgent to find sustainable solutions to the issue of nuclear waste. The list of possible technical solutions for spent nuclear fuel and other types of waste include deep geological disposal after reprocessing (favoured in France, Japan, and UK); direct deep geological disposal (favoured in Belgium, Sweden, Finland, Germany, USA and Czech Republic); surface long-term storage (favoured in the Netherlands, Italy and Spain). Each of these solutions translates into different ways on how to communicate, classify and govern nuclear waste in a particular country.

My research is focusing on how nuclear waste issues are communicated in various techno-political contexts. While studying how nuclear waste issues are being negotiated with communities in Russia, I discovered that natural resources like clay are used within nuclear waste discourses to mitigate the risk of potential radioactive contamination. It was my starting point to investigate how natural resources are used in various discourses about nuclear waste to make it less dangerous and harmful for people and environments. In the cases of Lithuania and Sweden, I am investigating how, through awareness and information campaigns, risks associated with nuclear waste are mediated and mitigated to transform the hazardous nuclear objects into manageable waste.

AG: What role does clay play?

AS: According to numerous researches on the role of the natural barrier in the nuclear waste disposal system, clay as well as crystalline rock are considered as a retardation medium for radionuclides migration. The multi barrier protection within nuclear waste technology illustrates how natural barriers or the geology of the disposal site will retard or mediate for both fluid flow and radionuclides migration in case of the engineering layer decay. This kind of technical vision of the disposal process promotes the natural protection layer as a reliable tool for absorption and immobilization of radioactivity. Geological and chemical studies of clay rock in various sites in the United States, France, Belgium, Canada and Russia show that clay has a number of absorption properties valuable for immobilization of the radioactive elements in the geomedia in case of the technical barrier decay. Thus, clay has become employed as a part of the nuclear waste management process. It represents a tool for absorption, immobilization and confinement of radioactivity. Including clay in the whole process of the nuclear decommission and decontamination makes it possible to reconsider the role of natural resources and materials in nuclear waste technologies and multi-barrier protection discourses.

AG: Are there differences in the Swedish and the Lithuanian (political) approach?

AS: Nuclear waste management systems in Sweden and Lithuania are developing in the context of decommissioning and nuclear phase out but following different trajectories and guidelines. The final repository for short-lived radioactive waste located at Forsmark in the municipality of Östhammar started operating in 1988. Lithuania is only now entering the phase of the construction of the landfill repositories for low and medium radioactive waste, and the construction of the geological disposal is programmed for after 2045. The Swedish approach represents an advanced example of nuclear waste management, based on the long-term experience of scientific research, transparent decision-making and continued reliance on public opinion and participation. Some connections in sharing nuclear waste management technology and experience exist between these two Baltic Sea countries. The Swedish nuclear waste authority, SKB, has been involved in the assessment of the existing nuclear waste facilities at the Ignalina NPP site in Lithuania since the 1990s. Swedish nuclear research and governance institutions continue to contribute to the transfer of knowledge and expertise in nuclear waste management taking part in numerous joint international research projects (BEACON; EURAD).

AG: What role does environmentalism play in the debate?

AS: As the two countries are at different stages of implementation of nuclear waste programs, it illustrates different levels of public engagement in the site selection process and environmental impact assessment of the radioactive waste disposals. In Sweden environmental issues are at the core of the public debate and concerns about the nuclear waste management program and are involving various actors, from local communities to International NGOs and leading national media outlets. In Lithuania environmental issues are less questioned, site selection is not contested and public participation is limited to local communities of the nuclear site with scarce media coverage. I suppose this situation will change with the start of a public discussion about the site selection for geological disposal of high radioactive waste and SNF and its environmental impact assessment. This debate will expand nuclear waste issues to the national scale. Considering environmentalism not only as participatory but also as scholarly concern, at the moment there are relatively few studies in environmental humanities and history about the uses of the natural resources in nuclear waste confinement and its impact on social and natural landscapes.

AG: Do people in the two countries differ in their risk perception?

AS: Different levels of public engagement in the nuclear decision-making illustrates different public opinion dynamics as well as public perception of nuclear risks. In Sweden due to the nuclear phase-out decision in 1980 and to the high impact of environmental movements, critical voices are prevailing the publicity concerning nuclear waste. In Lithuania the nuclear energy use became public only in the 1990s after the reestablishment of the independence and were associated mostly with Chernobyl disaster risks and anti-communist, sovereignty claims. During the transition period, the use of nuclear energy was considered as necessary for the economic and social developments of the country; political personnel, nuclear engineers and Lithuanian citizens embraced the energy produced by the Ignalina NPP as a national resource. The referendums about nuclear energy uses in Lithuania in 2008 and 2012 after the start of the decommissioning of the Ignalina NPP showed a rather radical change from pro- to anti-nuclear attitudes challenging the plan to construct a new NPP in the country.

NUCLEARWATERS welcomes Louis Fagon as a guest

By Alicia Gutting

The NUCLEARWATERS project puts great emphasis on studying nuclear history globally. Therefore, it is of major importance to us to work with other researchers. This March we welcome French nuclear historian Louis Fagon, who will stay with us for one month. NUCLEARWATERS project member Alicia Gutting is curious about who he is.

Alicia Gutting: Louis, it is great to have you here! Could you please introduce yourself and tell us about your research?

Louis Fagon: I am a PhD candidate in history at the École des Hautes Études en Sciences Sociales in Paris since 2018. In my thesis The Nuclear Industry at the Rhône River (1950s-1997) I am researching the social and environmental effects of the excessive nuclear planning at the Rhône with a focus on the microscale. Using local archives, I try to narrow in on the regional nuclear history. So far, the national history of nuclear power of France has been studied, however, the regional histories still remain a desideratum. What connects my research to the NUCLEARWATERS project is the special interest in water. In my thesis I research water twofoldly: On the one hand as part of the environment and a cooling agent for nuclear power plants and on the other hand water offers a research access to the nuclear history of France. Researching nuclear power in France most often poses a challenge as almost all files concerning nuclear are classified. The water focus is one way to circumvent the issue of access. So, I have been taking a detour through water files in the archives, which have led me to nuclear files in the end.

AG: How did you hear about the NUCLEARWATERS project?

LF: This was purely coincidental. I attended a conference in Mulhouse on the future of post-nuclear territories. There I’ve heard about a group of international researchers studying nuclear power from a water perspective in Stockholm. I was thrilled to hear that there were also other people interested in these issues! This seemed to confirm the relevance of my choice of subject, but I was also eager to meet the group.

AG: What expectations do you have of your time here?

LF: The Rhône is a transnational water body and also an international resource. This means different interests can collide over the allocation of this resource. I am hoping to learn from the other researchers in the group as they all have different national as well as international perspectives on nuclear power. These other perspectives will hopefully contribute to my thesis work, assist me in asking interesting questions and also challenge the French notion of France being exceptional.

AG: Thank you for telling us a little about yourself and your research!

On 25 March from 1pm till 3pm Louis will give a seminar at KTH’s Division of History of Science, Technology and Environment and elaborate a little more on his research. This will also be the launch of our NUCLEARWATERS Seminar Series. Welcome to join us if you are in town!

Uranium mining, radioactive waste and the nuclear fuel cycle

By Achim Klüppelberg

Last Tuesday NUCLEARWATERS guest Andrei Stsiapanau and I interviewed Dima Litvinov on his experiences from being Greenpeace’s representative in Russia. Among other issues, Russian nuclear waste handling during the 1990s became a main topic of our conversation.

While the interview as such was very stimulating for us as nuclear historians, two things stayed in my thoughts afterwards. First, the characteristics of the nuclear fuel cycle and secondly the role of water in it. As NUCLEARWATERS project leader Per Högselius has argued, in reality there is no such thing as a fuel “cycle” – proclamations of the nuclear industry notwithstanding. Instead, the management of nuclear fuel follows a linear process. With the mining of uranium it has a clear beginning and with the storage of nuclear waste it has its end. The actual amount of recycled fuel elements can in some cases prolong its lifetime, but they will still ultimately end up as waste. Dima shared with us his experiences of both the mining and the storage aspect. It became apparent that water has been a very crucial component in both. Unfortunately, water is often the carrier of radionuclide emissions in both instances, as it is used as a cleaning agent in the mining process and as a medium for storage in the case of historical dumping of nuclear waste into the sea.

In other words, water is crucial not only for the operation of nuclear power plants, but in virtually all segments of nuclear fuel systems. If we want to improve nuclear safety, water hence needs to be accounted for in our studies of the nuclear industry as a whole.

Roman Khandozhko joins NUCLEARWATERS

By Per Högselius

The NUCLEARWATERS research group is expanding! Today we are welcoming Dr. Roman Khandozhko as a new project member, to work with us for a period of one year as a senior researcher. Roman’s employment at the Division of History of Science, Technology and Environment at KTH Royal Institute of Technology takes the form of a unique cooperation between two ongoing ERC projects: NUCLEARWATERS and GRETPOL (the latter led by Peder Roberts).

Roman holds a PhD degree in history from Rostov-on-Don in Russia. He has extensive earlier experience of researching the history of nuclear energy in the Soviet Union, most recently through his participation in the impressive “Nuclear Technopolitics of the Soviet Union” project at the University of Tübingen in Germany. In his new position at KTH Roman he will contribute to our regional case study on the Soviet Union’s nuclear waters.

Exploring the nuclearized Po River basin

From 24 to 27 October NUCLEARWATERS project leader Per Högselius participated in the annual meeting of the Society for the History of Technology (SHOT), wich was held in Milan this year. The history of nuclear engineering played a prominent role at the meeting, featuring an impressive 25 presentations analyzing nuclear technologies in energy, medicine and war. Our project featured in a special session organized by ERC representative Flavia Cumoli, with the double purpose of spreading the word about three ongoing ERC projects in the history of technology – the other two being led by Maria Rentetzi and Mikael Hård – and seeking to inspire other historians of technology to apply for the ERC’s generous research grants.

After the meeting we decided to take the opportunity to explore Italy’s nuclear past through an excursion to the Po River basin. The area around and between Milan and Turin is heavily industrialized, while also being a key agricultural region. Water flows play key roles for both industry and agriculture, and the region has a proud water history, with a mesmerizing network of tributaries to the Po, artificial water ways, irrigation systems and so on. Rice cultivation, being highly dependent on water, has a long tradition in the region.

Several key nuclear facilities were built in the Po River basin. We went to see, in particular, the once so proud Trino Vercellese nuclear power plant, one of the world’s first-ever pressurized water reactors (PWRs), which went operational in 1964. At that time Italy was on the forefront in nuclear energy developments. Not far from here, in Saluggia, where the famous Cavour Canal meets a major Po tributary, the Italian nuclear engineers constructed the EUREX facility for reprocessing spent nuclear fuel. As noted by Davide Orsini in a presentation at the SHOT annual meeting, that site soon became problematic due to repeated problems with severe flooding of the whole facility.

In another SHOT presentation, Elisabetta Bini analyzed the new surge in nuclear construction in Italy that followed after the two oil shocks in the 1970s. One of the main new projects in the 1980s was to build two new powerful nuclear reactors just next to the existing Trino site on the Po. However, internal technical problems and fierce opposition from the side of the general public, and in particular from the local rice farmers, who feared local climate changes and water shortages, caused the new projects to stagnate. Then, in 1986, the Chernobyl accident occurred, and in a referendum the year after Italy opted radically to phase out its entire nuclear programme. And so by 1990 not only had construction of the new reactors at Trino been stopped, but also the original Trino facility built in the 1960s was being permanently closed down. However, the Enrico Fermi Nuclear Power Plant, as it is also called, is still there to be seen, beautifully situated on the swiftly flowing Po, in the dreamy fog of history.

Nuclear waters at the centre of a Soviet technocratic culture analysis

By Achim Klüppelberg

“In designing the water-graphite reactors used at Chernobyl, Soviet nuclear engineers chose specific design features that made serious – albeit not catastrophic – accidents all but inevitable.”1

Soviet nuclear power plants in the vast majority of cases depended on water as a necessary and safeguarding coolant. But where should one get enough of it in the largely land-locked territory of the Soviet Union? Soviet technocratic planners happily took on this challenge. Over the centuries, the country’s grand rivers, notably the Volga, the Don and the Dnepr, had hosted urban centres and industries, providing them with much-needed water resources. So why not use the immense flow of these waterways for harnessing a new and even greater industry – that of the peaceful atom? The Soviet civilian nuclear programme was one of the most ambitious of the world. Before 1986, the year in which Chernobyl struck, the nuclear industry held grand prospects for further investment and development. Being a country as vast as the USSR, in which 75% of the population lived in the west while 80% of (mostly fossil) energy resources were located in the east, technocratic planners envisioned nuclear power as one way to secure a stable energy supply, especially for industrial hotspots in western Russia and eastern Ukraine.2

Soviet projections in the 1980s stated that nuclear energy, together with coal, would be the only realistic choice for the future production of electricity, leaving hydro power deliberately out of the picture.3 Facing these circumstances, the nuclear inner circle decided, or so it seems, to turn a blind eye to possible detrimental consequences to both the natural environment and human populations, in order to reinvigorate an ailing Soviet economy and facilitate the advent of Communism.

In 1979 only 4.5% of the energy mix of the USSR actually derived from nuclear electricity production.4 Despite well-developed hydropower resources the country was excessively dependent on fossil fuels and stayed so until the red empire’s dissolution in 1991.5 However, Soviet technocrats mobilized tremendous resources into the development of the nuclear industry, hoping to diversify the Soviet energy mix. At the union level central planners agreed to increase nuclear power production from 16 GWe in 1982 to 90 GWe in 1990 and then even further to 200 GWe in 2000, hence aiming to increase nuclear power output 12.5-fold in just 18 years.6 In fact, by 1990 the Soviet Union had succeeded in installing 38.3 GWe.7 Although falling considerably short of the planned goal, these numbers show how technocratic planners in the Soviet Union at least partly managed to implement their vision of a nuclear future for their country.

But how did they use the country’s water resources to their advantage? Rivers, lakes and seashores could be prepared to host nuclear power stations, but each of them had important implications for local stakeholders, such as fisheries, agriculture and local municipalities. It is clear that water was, on the one hand, a limiting factor for the construction of nuclear power plants due to the necessity of sufficient coolant, and, on the other, an interconnecting trans-systemic substance, which incorporated the nuclear industry into the Soviet socio-economic utopia. My part of the NUCLEARWATERS project strives to investigate this linkage between technocratic culture and water, between central planning ambitions and atomic waterways and between communist historical-materialist ideals and nature’s essence of life. Only by investigating this complex of ideology, culture and material environment will scholars come closer to understanding the Soviet nuclear industry. If we want to judge nuclear safety in Europe’s East, this is necessary.

“Science demands sacrifices.”8

Petrosyants, chairman of the State Committee for the Use of Nuclear Energy in the USSR on 6 May 1986, 10 days after the explosions of reactor 4 at Chernobyl.

1Geist: Political Fallout: The Failure of Emergency Management at Chernobyl’, p. 107.

2Semenov: Nuclear power in the Soviet Union, in: International Atomic Energy Agency Bulletin Vol. 25, No. 2, June 1983, p. 47.

3Medvedev, Z.: The Legacy of Chernobyl, New York a. London 1990, pp. 300-301.

4Margulis: Atomnaya ėnergiya i radiatsionnaya bezopasnost’, Moskva 1983, p. 125.

5CIA: USSR Energy Atlas, Washington a. Springfield 1985, p. 7.

6Vorob’ev et al.: Radiation Safety of Atomic Power Plants in the USSR, in: Atomic Energy (Vol. 54, No.4, April 1983), Luxembourg/ Berlin/ Heidelberg 1983, pp. 290-301, here p. 290.

7https://pris.iaea.org/PRIS/CountryStatistics/CountryDetails.aspx?current=RU [25.04.2019]). Also IAEA: Nuclear Power Reactors in the World (Reference Data Series No.2, 2018 Edition), Vienna 2018.

8Medwedew, G.: Verbrannte Seelen. Die Katastrophe von Tschernobyl, Munich a. Vienna 1991, p. 222.

Workshop in Dounreay, Scotland

Dounreay nuclear station was in operation between 1955 and 1994 and houses two fast breeder reactors and one thermal research reactor, along with fabrication and reprocessing facilities. Next to it is a military nuclear establishment with two reactors for submarine developments, in operation between 1965 and 2015. Taken together, there are no less than five reactors located directly on the dramatic shore of Scotland’s northern tip, where the North Sea meats the Atlantic Ocean and create some of the most dangerous water fairways in the world.

During the second week of September, about fifteen scholars and heritage professionals, among them NUCLEARWATERS’ Anna Storm, met in Dounreay and the nearby town of Thurso to engage with the legacies of the nuclear establishment, among them a flourishing community life but also severe contamination problems. The liquid radioactive waste produced by the nuclear research experiments was often simply discharged into the sea through an underwater pipe, while the solid residues were dumped into a deep shaft on site, originally stemming from the building of the emission pipe. After an explosion in the 1970s, it was acknowledged that the shaft was not an acceptable storage, not least since it was unlined and open to ground water flows.

All transportation to and from the Dounreay site go through the nearby Scrabster harbour. Scrabster has a long fishing tradition and remains one of the top landing ports in the UK for whitefish and shellfish, including brown crab, lobsters, prawns and scallops. During our visit, trucks went in shuttle service to customers southward, not only in the UK but on the European continent. Around the Dounreay nuclear site however, there is an effective fishing prohibition for a radius of two kilometers, and the levels of contamination at the closest beach of Reay are still unclear.

Alicia Gutting presents her PhD project

Today NUCLEARWATERS doctoral candidate Alicia Gutting presented her PhD project plan in the Higher Seminar series at KTH’s Division of History of Science, Technology and Environment.

Alicia Gutting holds a diploma degree in theatre, film and media studies and a master’s degree in social and cultural anthropology, both from the University of Vienna. Before joining KTH she also worked as a junior researcher at the Institute of Technology Assessment at the Austrian Academy of Sciences. In her PhD project she explores the making of the Rhine as a highly nuclearized transnational river basin from the 1960s to today. Key to grasping this history, she argued at the seminar, is to study the transnational perception of risk in the borderlands between Germany, France, Switzerland and Austria. She sets out to do so from a healthy diversity of empirical angles, ranging from fears of floods and droughts and the consequences of heatwaves – the latter phenomenon was dramatically illustrated during the past two summers as Rhine nuclear operators were forced to lower electricity production in the face of water scarcity – to clashes between nuclear cooling requirements – of exisential importance for preventing nuclear core meltdowns! – and equally existential drinking water needs and, not least, powerful agricultural interests and fears of local climate change.

Nuclear Waters on Holiday: Power Plants along the Autoroute du Soleil

It is the summer holiday season! A period in which people try to relax, de-connect, and forget about work for a while. Yet, work sometimes has its funny ways of following you.

My family and I have the tradition of spending our holidays at the Côte d’Azur in the South of France. We load the car as full as we can and hit the road for a full day (normally by night or on a Sunday to avoid the traffic jams).

Since this year, the first year of my PhD (which is about the global governance of water-related nuclear risks), this drive has become a bit more interesting than before. After you have passed Lyon, the highway to the Côte d’Azur, popularly called the “Autoroute du Soleil”, runs through the Rhône valley, where a lot of nuclear power plants are located.

It reminded me of course of Sara Pritchard’s book ‘Confluence’, which tells the history of the transformations of the Rhône during the post-war period. It is a key publication for our project. Not only does it theorise the connection between technology and the environment, it is also (and especially) a powerful account of the human use of water and the management and conflicts of interest that this entails.

Nuclear power plants are one of the key users of the river. Not less than 6 nuclear power plants have been constructed on the banks of the Rhône. ‘Confluence’ describes the controversies this entailed and the effects this had on the river. Even if the scope of nuclear energy in France is huge, 6 nuclear power plants along one river is still a enormous concentration.

And interestingly, there is no better way to observe this than driving past them. When you leave Lyon, you almost immediately see the power plant of Cruas, which is a bit hidden in a valley but still visible from the highway. From there it only takes an extra 45 minutes to see the next nuclear power plant, Tricastin, located right next to the highway. From Tricastin the next nuclear power plant, Marcoule, is not even 30 (!) minutes away. The “Autoroute du Soleil” is really an “Autoroute Nucléaire as well.”

The Tricastin nuclear power plant, seen from the “Autoroute du Soleil.” It has four reactors and is located very close to both the nuclear power stations of Cruas and Marcoule. Due to record temperatures this summer in France, EDF closed down the power plant temporarily.

This is perhaps just a geeky enjoyment during a tedious 14-hour drive, and maybe at best a nice anecdote to tell my fellow nuclear scholars. Yet, it has also left me with some questions. Is it actually safe to build nuclear power plants that close to each other? Is there enough water for them to use? Does the water not heat up too rapidly? And does this heavy nuclearisation of rivers not render nuclear power more vulnerable (and thus more risky) to droughts and heat waves? This year again, Electricité de France (EDF, France’s energy operator) closed down several reactors because the cooling water was diminishing and heating up, including two along the Rhône.

I cannot help but wonder whether this was at some point on the political agenda of either the French government or an international organisation such as the International Atomic Energy Agency, Euratom, or the Nuclear Energy Agency. In any case, it is something I hope to find out in my PhD!